Как сделать 3d голограмму для вашего смартфона?

Как работает 3D-голограмма из пирамиды?

Голографическая пирамида — это простое устройство, которое может быть изготовлено путем создания из листа пластика фигуры в форме пирамиды с обрезанным верхом. Устройство создает трехмерную иллюзию для зрителя и делает изображение или видео таким, как если бы оно находилось в воздухе. Работает по принципу Призрака Пеппера (англ. википедия). Четыре симметрично противоположных варианта одного и того же изображения проецируются на четыре грани пирамиды. В принципе, каждая сторона проецирует изображение, падающее на нее, в центр пирамиды. Эти проекции работают в унисон, образуя целую фигуру, которая создает трехмерную иллюзию.

СЕРТИФИЦИРОВАННЫЕ МАТЕРИАЛЫ 3DGENCE

 Учитывая всю вышеперечисленную информацию, пользователи 3D-принтеров имеют широкий выбор материалов, которые они могут задействовать в зависимости от своих потребностей. Вместе с тем, есть некоторые риски для неопытных пользователей.

Например, материалы одного и того же типа, но поставляемые двумя разными поставщиками или производителями, могут обладать разными свойствами по показателям химического состава, механических свойств или устойчивости к различным факторам окружающей среды. Определенная информация, предоставляемая поставщиками материалов или фирмами, производящими принтеры, может быть неполной, слишком сложной для понимания, а иногда даже ошибочной.

 По этой причине компания 3DGence решила создать «Базу Сертифицированных Материалов».

Основываясь на знаниях наших специалистов, рыночных тенденциях и потребностях наших клиентов, компания 3DGence постоянно работает над профилями печати, тем самым обеспечивая наилучшие результаты печати.

Работая со всеми основными материалами, используемыми в методах послойного наплавления (FFF/FDM), наш отдел исследований и разработок посвящает значительное количество времени испытаниям материалов, которые востребованы клиентами, а также разработке профилей материалов, которые расширяют диапазон доступных вариантов печати.

База Сертифицированных Материалов дает пользователям возможность выбора полимеров любого класса. Используя категории материалов, собранных под нашей торговой маркой или рекомендуемой нами марки, пользователи всегда могут быть уверены в результатах печати и максимально возможном качестве моделей. Профили печати, доступные в интуитивно понятном программном обеспечении 3DGence SLICER 4.0, разработаны специально для материалов, собранных в Базе Сертифицированных Материалов. Группа технологического контроля нашей компании, специалисты по внедрению, а также отдел исследований и разработок готовы оказать поддержку пользователям в случае возникновения каких-либо проблем с рекомендованными нами материалами, используемыми на 3D-принтерах компании 3DGence.

Клиентам 3DGence не обязательно быть экспертами в области материалов или 3D- печати; в этих областях они могут положиться на наш опыт. Наша команда позаботилась о правильной настройке 3D-принтера для каждого сертифицированного филамента.

Вместе с тем, пользователи не ограничены определенной маркой филамента и могут печатать любыми имеющимися на рынке филаментами сторонних производителей, при условии их физической совместимости с оборудованием, не теряя при этом гарантии на 3D-принтер. Можно использовать предустановленные профили для определенной марки и самостоятельно настраивать программное обеспечение 3DGence SLICER 4.0 под параметры, соответствующие используемому материалу.

Применение:

Аэрокосмическая промышленность Внутренние конструктивные элементы Огнестойкие элементы

Модели с высокой устойчивостью к широкому спектру химикатов

ULTEM AM9085F — это высокотехнологичный полимер, широко используемый в наиболее востребованных сегментах рынка, которые охватывают аэрокосмическую, автомобильную или медицинскую промышленность, а также изготовление изделий из тугоплавких материалов. Его отличительные свойства включают в себя устойчивость к высоким температурам вплоть до 165-175 °C, химическую стойкость к натуральным и синтетическим растворителям, высокую прочность на разрыв и повышенную теплопроводность. В отличие от большинства других аморфных термопластов, ULTEM сохраняет прочность и устойчив к растрескиванию под воздействием автомеханических и авиационных жидкостей, алифатических углеводородов, спиртов, кислот и слабых водных растворов.

По сравнению с PEEK и PEKK, ULTEM демонстрирует незначительно меньшую прочность, устойчивость и сопротивление ползучести, но благодаря низкой горючести и токсичности высоко оценивается авиастроителями.

Полимер ULTEM AM9085F отлично поддается постобработке. Материал обладает исключительным балансом между механическими свойствами и технологическими возможностями.

Для обеспечения высокого качества печати необходимо предварительно прогреть камеру построения до температуры не менее 170 °C, с равномерным рассеиванием тепла.

Скачать файл

Где брать готовые изображения для создания голограммы

Картинки для воспроизведения голограмм должны быть не обычные, а специально подготовленные. Как описано выше, изображение должно быть симметричным в пределах квадрата и состоять из 4 одинаковых элементов, расположенных крестообразно. Можно самостоятельно выполнить такую заготовку и придать ей движение, проявить художественные способности, выражая свои мысли. Прежде чем пытаться это сделать, нужно найти готовые анимации и видео для просмотра голограмм. Затем сделать призму и приобрести первый навык по созданию 3D-изображений. Вспоминая принцип действия, будет легче воплотить собственные задумки.

Как делать большую голограмму для ноутбука?

Особенности 3D-изображений, полученных вышеизложенным способом, реализуются в виде большой голограммы. Шаблон — трапеция с основанием 240 мм, верхней горизонталью 40 мм и высотой 140 мм. Относительно боковых граней изготавливается фаска под 45°. Стекла таких размеров есть у стекольщиков. Вырезать их нужно точно, от чего зависит качество 3D-картины. Так что легче это реализуется с пластиком.

Ребра аккуратно склеиваем силиконом. Из двухстороннего скотча вырезаем полоски размером 1 см и обклеиваем верхний срез стекла. Далее включаем картинку для 3D-изображений на весь экран. Ставим на него пирамиду меньшим квадратом. Скотч поможет избежать царапин. Совмещаем ребра с белыми диагоналями, запускаем видео в темной комнате.

Правила соблюдения размеров

В сетях сегодня можно найти специальное видео для 3D-голограммы. Анимационные картинки, обычно изображенные на черном фоне, — основа для 3D-проекции, которая появится в прозрачной пирамиде. Нужно скачать их и включить на экране устройства. Для проверки соответствия размеров нужно сделать следующее.

  1. Расположить смартфон (в данном случае — планшет) вверх экраном.
  2. Поставить призму меньшим основанием на экран.
  3. Посмотреть на изображение сверху. Маленький квадрат (срез верхушки пирамиды) должен быть примерно в 2 раза меньше расстояния между движущимися картинками.
  4. Само изображение в целом не должно выходить за пределы большего квадрата.
  5. Высоту призмы проверяем по углу наклона ребра — примерно 45°. Тогда изображение не окажется слишком высоко, выходя за пределы прозрачной конструкции, или низко.

Если все параметры правильные, призму для монитора можно считать готовой и годной к использованию при воспроизведении объемного изображения.

Картинка, созданная в центре призмы, привлечет внимание и ребенка, и взрослого

Создаем пирамиду для 3D-голограмм

1. Распечатайте шаблон, показанный ниже, на листе бумаги формата A4.

ПРИМЕЧАНИЕ. Если у вас нет доступа к принтеру, вы также можете создать шаблон самостоятельно. Нарисуйте основную «трапецию» на листе бумаги, используя размеры на рисунке выше. Параллельные стороны = 1 см и 6 см, две другие стороны равны 4,5 см каждая. Вы всегда можете удвоить или утроить размеры пропорционально для использования на большом дисплее.

2. Обведите форму на пластиковом листе, используя линейку и ручку. Для трапециевидного шаблона выделите четыре аналогичных контура на пластиковом листе. Теперь аккуратно вырежьте контуры режущим лезвием и линейкой. Постарайтесь сделать свои разрезы как можно более точными для создания более идеальной пирамиды.

3. Если вы использовали шаблон распечатки: очень легко надрежьте красные края с помощью режущего лезвия. Это позволит вам лучше сложить края и сформировать форму пирамиды. Склейте открытые края листа, используя прозрачную ленту.

Если вы использовали трапециевидный шаблон: соедините четыре края, чтобы сформировать форму пирамиды. Соедините их. В любом случае, в итоге у вас будет пирамида, подобная той, что показана ниже.

4. Вот и все! Вы сделали себе пирамиду для будущих голограмм! Все, что вам нужно сделать сейчас, это воспроизвести голограмму на вашем телефоне. Поместите голограмму в центре экрана, как показано на рисунке ниже, и наслаждайтесь шоу. Не забудьте выключить свет в комнате, прежде чем начать воспроизведение видео.

5

Теперь самое важное! Можно найти множество голограмм на YouTube. То что может получиться — вы можете увидеть на видео ниже

Голограмма: как сделать карточку дома

Приступаем к работе:

Самое сложное — это выбрать подходящее место. Таким должна быть темная комната, где нет вибраций, сквозняков и даже скрипучих половиц. Проверить пригодность помещения можно, поставив на стол прозрачную бутылку с водой. Просветите через 5 минут верхний уровень воды фонариком, чтобы он отобразился на ближней стене — нет движений, значит, можно начинать.
Для работы выберите нешатающийся стол или же расположитесь на полу.
Предмет для будущей голограммы уложите в лоток с песком или на коврик для компьютерной мыши.
Теперь в 30 см от героя изображения разместите лазерную указку, воткнув ее прищепкой в стакан с солью, как на фото. Рекомендуется использовать красные голографические диоидные лазеры с регулируемой линзой.
Снимите регулируемую линзу — луч обязательно должен расширяться, принимая в конце форму эллипса, и полностью освещать предмет.
Выключите свет — на вашу систему не должны попадать прямые лучи

Для работы поставьте ночник под столом или немного приоткройте дверь — должны быть сумерки, в которых невозможно читать.
Расположите книгу между лазером и предметом — она должна полностью скрывать последний от луча.
В самом темном месте комнаты откройте одну голографическую пластинку, перпендикулярно установите ее рядом с предметом, как на изображении.
Осторожно уберите книгу-заслонку, чтобы не вызвать вибраций, луч лазера должен освещать предмет и картинку в течение 10 секунд.
Верните заслонку на место.
Осталось обработать пластину: развести сухой светочувствительный порошок с дистиллированной водой в 2 емкостях, получив проявитель и осветлитель. Продержите пластину в первом 20 секунд, промойте ее в емкости с чистой водой 30 секунд, потом опустите в осветлитель на 20 секунд и снова полминуты промывайте в чистой воде.
Высушите пластинку феном, держа ее в вертикальном положении, но не перегревайте ее.
После полного высыхания можно ознакомиться с результатом при помощи точечного освещения

Ни в коем случае не используйте для этого люминесцентные лампы и матовые колбы, чтобы не испортилась голограмма.

Как сделать голографическое изображение, мы полностью рассказали. Выбор за вами: сотворить проекцию или обрести в своей коллекции «волшебную» картинку.

Работа с пленкой

Итак, у вас почти готова голограмма. Как сделать ее более светлой? После снимка нужно обработать отбеливающей смесью пленку. Готовится такое вещество очень просто. Для этого нужно смешать 900 миллилитров воды с 30 граммами сернокислого железа и таким же количеством бромистого калия. После приготовления объем состава нужно довести до одного литра.

Проявлять пленку следует при зеленом освещении. Для сушки готового фотоматериала можно использовать обычный фен для волос. Вот и все. Теперь вы знаете, как сделать 3D-голограмму.

Продолжаем пристальное изучение коробочек от Простой Науки . Сегодня представляю вашему вниманию «Голограмму».

Пару месяцев назад в одной из социальных сетей мне прислали ссылку на видео (люди знают что я люблю), где была показана голограмма. Мне показалось, что сделать самому такое изображение просто невозможно. И я благополучно забыла об этом видео. Потом опять мне присылают ссылку уже о том как самому сделать голограмму.

И теперь имея подробное руководство, мы принялись за изготовление. Надо отметить, что я мама двух торопыг (третий пока еще не в теме экспериментов), да и сама торопыга. Хочется сделать побыстрее и тут же получить результат.

ИНЖЕНЕРНЫЕ

Средний уровень — это инженерные полимеры. Существуют материалы, которые обладают значительной устойчивостью к воздействию химических веществ, высоким температурным, механическим и ударным нагрузкам. Материалы инженерного класса могут быть модернизированы дополнительными присадками или произведены в специальных условиях для обеспечения особых характеристик, которые не могут быть получены обычным способом. Такие материалы могут быть огнестойкими или способными рассеивать электрический заряд. Полимеры также могут быть усилены стекловолокном или углеволокном для повышения механических свойства и термостойкости.

Существует ряд условий, которые необходимо выполнить для того, чтобы использовать полимеры инженерного класса для получения удовлетворительных результатов и высококачественных моделей. Промышленные 3D-принтеры обеспечивают необходимые условия и обладают всеми функциями, которые позволяют печатать инженерными полимерами.

Чертим трапецию

После того как подготовлены все необходимые элементы, следует приступить к черчению трапеции (трафарета). Для этого берём лист бумаги и с помощью линейки и карандаша чертим трапецию с такими сторонами:

  • низ – 6 сантиметров;
  • верх – 1 сантиметр;
  • высота – 3,5 сантиметра.

После окончания берём ножницы и вырезаем получившуюся трапецию. Это будет трафарет с помощью которого будут сделаны стены будущей пирамидки.

Вырезать трапеции из коробочек от CD (4 штуки)

Это самый трудоёмкий этап изготовления пирамидки, требующий повышенного внимания. Причина трудоёмкости в том, что пластик, из которого изготовлена коробка CD диска очень хрупкий и при сильном давлении может начать трескаться.

  1. Разбираем контейнер от диска.
  2. Прикладываем получившийся трафарет.
  3. Обводим трапецию маркёром.
  4. Берём линейку и нож.
  5. Приложить линейку по линии маркёра и аккуратно провести по ней ножом.
  6. После появления бороздок линейку можно убрать.
  7. Вырезать трапецию.
  8. По образцу получившейся трапеции вырезать ещё 3 штуки. Всего должно быть 4.

Современное применение

Современными примерами сегодня являются, например, прозрачные и полупрозрачные достопримечательности в парках Уолта Диснея. Мир знает их как крупнейшие реализации этой идеи. На длинной сцене собрано несколько эффектов. Гигантская голограмма в 9,1 м просматривается в пустом бальном зале. Анимированные призраки движутся в скрытых черных комнатах. Самая современная версия применяется в башне Террора Сумеречной Зоны.

Аттракцион в городе Нэшвилле использует классическую технику, давая гостям увидеть духов, взаимодействующих со средой. Их видно особенно близко. В Калифорнии также есть аттракцион Хэллоуин на Лесных горах, изображающий сюжетных персонажей. Проекция изображения на пол и отражение его в стекле позволяет живому актеру взаимодействовать с призраком, что используется в спектаклях. Мир может увидеть феномен в Нидерландах, Австралии, Америке, музеях, парках, научных выставках и аттракционах. Иллюзия находит применение в разных сферах:

  1. Телевидение и кино используют метод для трансляции передач и создания эффектов.
  2. Иногда феномен применяют в коммерческих целях для привлечения посетителей.
  3. Его часто используют на музыкальных концертах. Но в этом случае изображения часто проецируемые, а не голографические. Целые установки работают на специальном программном обеспечении.
  4. Политические выступления позволяют воспроизводить фигуры сразу в нескольких местах. Такой эффект применялся в Индии при выступлении министра Нарендра Моди.
  5. Научная философия использует голографическую модель Вселенной, где каждая часть 3D-изображения содержит информацию обо всей картине. Это помогает подробно изучать мир.

Повествование о создании 3D-изображений следует закончить фразой персонажа Билла Шифра из мультипликационного сериала Gravity Falls: «Помни, что реальность — иллюзия, вселенная — голограмма, скупай золото!». Данный герой, нарисованный в форме всевидящего ока, по идее мультика появился из второго измерения «плоских умов». Он мог поселяться в сознании, посещать сны и обладал черным юмором. Ненавидя соплеменников, уничтожал второе измерение и помогал проявляться третьему.

Положить конструкцию на телефон

Теперь остался последний шаг и можно будет увидеть 3D голограмму в середине пирамидки. На первых секундах после запуска видео появляется рисунок в виде крестика, по граням которого надо поместить изготовленную пирамидку. Для более точного размещения лучше нажать паузу и выставить как надо.

Вот так с помощью подручных средств вы сможете изготовить пирамидку за 5 минут, в центре которой вы увидите 3D изображение. Благодаря разнообразию доступных видео можно посмотреть удивлять окружающих разными голограммами и даже использовать их в качестве ночника.

Для изготовления проектора нам потребуется:

клеевый пистолет;

канцелярский нож;

прозрачный пластик от футляра сд-диска;

плоскогубцы;

мобильный телефон;

На фото чертеж голографической пирамиды.

Обратите внимание, что угол наклона боковых граней пирамиды должен составлять точно 45 градусов. Сначала временно приклеим трафарет на двухсторонний скотч

Далее с помощью канцелярского ножа сделаем глубокие надрезы и после этого отламываем при помощи плоскогубцев, зажав заготовку в тисках. Выравниваем сколы полученной заготовки, используя наждачную бумагу

Сначала временно приклеим трафарет на двухсторонний скотч. Далее с помощью канцелярского ножа сделаем глубокие надрезы и после этого отламываем при помощи плоскогубцев, зажав заготовку в тисках. Выравниваем сколы полученной заготовки, используя наждачную бумагу.

Повторяем эту операцию еще три раза для получения в итоге четырех одинаковых заготовок.

Когда будут готовы заготовки для 3д-иллюзии, освободим их от подложки и склеим между собой для получения пирамиды, а если говорить точнее – усеченной пирамиды.

Вот и все. Голографический проектор готов!

Нужно установить пирамиду вверх ногами точно по центру дисплея телефона. Сверху кладем картонный квадрат, он должен быть темного цвета.

Теперь запускаем видео и наблюдаем голограмму в действии с любой стороны.

Все знают, что голограмма
— это объемное изображение. Но мало кто слышал о том, что его можно создать при помощи обычного смартфона! Почувствуй себя настоящим волшебником, мы знаем секрет этого чуда и с радостью им делимся.

Вскоре появятся телефоны, которые будут проецировать голографическое изображение собеседника во время телефонного звонка, создавая иллюзию присутствия человека рядом. Уже существуют объемные изображения, которые можно потрогать руками! Пока ученые продолжают делать невероятные открытия, ты можешь насладиться этим эффектным экспериментом…

Как сделать голограмму из себя

Если хочется сделать голограмму (3D-изображение) из самого себя, нужно повесить черную ткань в качестве фона и сфотографироваться, сделав несколько различных кадров. Для начала достаточно 2-3 фото в качестве основы для придания движения (анимации). Можно записать видео со своим изображением на темном фоне. Из него впоследствии возможно сделать раскадровку (разбиение на отдельные кадры) и создать заготовки для голограммы в анимационном формате.

Для создания анимации нужно знать, как делать движущиеся картинки. Если этого не знать, затея сделать трехмерное движущееся изображение самостоятельно может не привести к нужному результату. Каждый кадр в голограмме создан заранее, а при воспроизведении картины чередуются с заданной скоростью.

Можно использовать практически любой фоторедактор и программу для анимации. Специальная картинка для 3D включает фото человека, повторенное 4 раза и расположенное крестообразно. Эти 4 одинаковых изображения на черном фоне нужно разместить в рамках квадрата. На экране планшета изображение будет двухмерным. Далее надо посмотреть на него сбоку через призму, установленную на экран основанием (квадратом). Это будет удивительно, так как 3D-картинка предстанет в призме как бы реальной, а не двухмерной.

Немного истории

Иллюзия голограммы появилась давно. Подобная техника с 19 века использовалась в театрах, парках, музеях и на концертах. Эффект получил название Призрака Пеппера по имени ученого Д. Г. Пеппера, распространившего явление посредством демонстрации. Это было в 1862 году, а сегодня искусство голограммы достигло совершенства. Мир начал знакомиться с феноменом еще в 16 веке, когда неаполитанский ученый Джамбаттиста делла Порта разработал камеру для иллюзии. Им же написана работа «Натуральная магия», которая является первым упоминанием о воспроизведении иллюзий. Ученый рассматривал вопрос о том, как в камере могут быть видны предметы, которых там на самом деле нет.

Политехнический институт в Лондоне — научное учреждение, где работал Д. Г. Пеппер в 1862 году. Изобретатель Г. Диркс в то же время практиковал технику появления призрака на сцене в спектакле. Он безуспешно пытался продать театрам свою идею. Это требовало полной перестройки сцены, и эффект был признан слишком дорогостоящим. Тогда Диркс основал стенд в политехническом институте, где его наблюдал Пеппер. У ученого появилось намерение модифицировать метод, после чего явление начали использовать в кинотеатрах. Так феномен приобрел значительный успех, и мир узнал о нем подробно. Усовершенствование явления Д. Пеппером привело к тому, что оно получило его имя, а Диркс передал ему все финансовые права в совместном патенте. Люди, присутствуя на различных шоу, позволяли себя обманывать, так как считалось, что явление создано гениями.

Призма для голограммы

Чтобы изготовить призму, нужно взять 4 коробки от компьютерных дисков с прозрачными крышками. Этот пластик подходит для создания конструкции, которая делается следующим образом:

  1. Отламываем от коробки прозрачную крышку, освобождаем от боковых частей, оставив только гладкую поверхность.
  2. Теперь нужно вырезать из заготовок геометрические фигуры по трафарету.
  3. Изготавливаем картонную равнобедренную трапецию с основаниями 2 и 12 см и высотой 8 см.
  4. Этот трафарет прикладываем к пластику и обводим маркером (лучше черным).
  5. С помощью металлической линейки и канцелярского ножа делаем точные прорезы по намеченным линиям. Усилие должно быть значительным, или необходимо провести инструментом несколько раз.
  6. По данному разрезу легко разломить пластик. Сглаживаем края пассатижами.
  7. Получилось 4 трапеции. Они одинаковы по форме и размерам. Трапеции нужно склеить между собой скотчем, для чего раскладываем их на одной плоскости, приложив ребрами друг к другу.
  8. После переворачивания полученной плоской фигуры формируем из нее объемную призму. Теперь ее ребра с наружной стороны закрепляем скотчем.

В случае если голограмму создают на смартфоне, вся конструкция изготавливается из одной коробки для CD или DVD-диска (из трапеций меньшего размера). Для этого уменьшают размеры трафарета. Габариты призмы для голограммы могут быть любыми, они определяются в зависимости от размера экрана устройства, на котором будет воспроизводиться 3D-картинка.

В качестве материала вместо крышек от коробок из-под дисков можно использовать оргстекло или толстую прозрачную пленку. Можно применять любой пластик, даже очень тонкий и гибкий, и обычное стекло.

Принципы физики

Амплитуда и фаза характеризуют объекты волн. Зарегистрировать амплитуду можно без проблем. Настоящую голографическую пирамиду может без проблем зарегистрировать обыкновенная фотопленка. Она преобразует ее в фотографическое почернение. Интерференция нужна для регистрации фазовых соотношений голографической пирамиды. Она преобразует ее в фазовые амплитудные соотношения. При помощи нескольких электромагнитных волн получается интерференция.

Частоты этих волн голографической пирамиды должны совпадать. Две волны необходимо сложить в определенной области, чтобы записать голограмму. Одна из этих областей — опорная волна. Другая — объектная волна голографической пирамиды. В этом месте нужно вставить пластинку или любой другой материал. В результате в этой области возникает картинка. Чтобы получить объектную волну, нужно просветить опорной волной эту пластинку. В результате чего мы получим такой же свет, который отражается от объекта записи.