Оглавление
- Как перевести мкА в амперы: формула и порядок вычислений
- Аналоговая токовая петля
- Контакты в Москве и Московской области
- Плата для преобразования тока 4..20 мА в напряжение
- Преобразовать микроампер в миллиампер (мкА в мА):
- Карта сайта
- Какой тип расцепителя выбрать?
- Основные параметры запоминающих герконов
- Характеристики высоковольтных герконов и герконов повышенной мощности
- Как пользоваться
- Поключение преобразователя тока в напряжение к ESP32
- Проводим расчеты
- Унифицированный сигнал напряжения 0-10 В
- «Токовая петля»: унифицированный аналоговый сигнал 4-20 мА
- История разработки
- Номинальное значение и класс дифавтомата
- Условное обозначение герконов
- Параметры замыкающих герконов стандартного и промежуточного типов
Как перевести мкА в амперы: формула и порядок вычислений
Проблема перевода единиц измерения тех или иных физических величин в удобный формат возникает у большинства людей, которые активно пользуются электронной техникой на работе и в быту. Большинство приборов работает за счет электроэнергии, которая должна подключаться к устройству с определенными параметрами, в нужном количестве для обеспечения работоспособности в безопасном режиме. Поэтому вопрос перевода мА или мкА в амперы имеет практическое значение.
- Формула для вычисления тока
- Единицы измерения
- Способы перевода величины тока
- Как перевести мкА в амперы
- Использование интернет-калькуляторов
Аналоговая токовая петля
Аналоговая токовая петля используется для передачи аналогового сигнала по паре проводов в лабораторном оборудовании, системах управления производством и т. д.
Применяется смещенный диапазон 4—20 мА, то есть наименьшее значение сигнала (например, 0) соответствует току 4 мА, а наибольшее — 20 мА. Таким образом весь диапазон допустимых значений занимает 16 мА. Нулевое значение тока в цепи означает обрыв линии и позволяет легко диагностировать такую ситуацию.
Интерфейс аналоговой токовой петли позволяет использовать разнообразные датчики (давления, потока, кислотности и т. д.) с единым электрическим интерфейсом. Также данный интерфейс может использоваться для управления регистрирующими и исполнительными устройствами: самописцами, заслонками и т. д.
Диапазоны токов и напряжений описаны в ГОСТ 26.011-80 «Средства измерений и автоматизации. Сигналы тока и напряжения электрические непрерывные входные и выходные».
Основное преимущество токовой петли (по сравнению с более дешёвой параметрической передачей напряжением) — то, что точность не зависит от длины и сопротивления линии передачи, поскольку управляемый источник тока будет автоматически поддерживать требуемый ток в линии. Такая схема позволяет запитывать датчик непосредственно от линии передачи. Несколько приёмников можно соединять последовательно, источник тока будет поддерживать требуемый ток во всех одновременно (согласно закону Кирхгофа). Но если в цепи появятся утечки, работа токовой петли нарушится, и средствами реализации самой токовой петли это не обнаруживается, что необходимо учитывать при проектировании ответственных производственных участков.
Поверх аналоговой токовой петли можно передавать цифровую информацию. Такой способ передачи данных описан в HART-протоколе. Конкурирующими протоколами, способными в будущем вытеснить HART, являются различные цифровые полевые шины, такие как Foundation fieldbus или PROFIBUS.
Контакты в Москве и Московской области
Прием документов в бумажном варианте осуществляется службой «Одного окна» Москомархитектуры по адресу: г. Москва, Триумфальная пл., д.1. Прием и выдача документов службой “Одного окна” осуществляются:
- с 08:30 до 15:00, обед с 12:00 до 13:00 (пн. — чт.)
- с 8:30 до 12:00 (пятница и предпраздничные дни).
Управление архитектурно-художественного облика Москвы осуществляет прием граждан и представителей юридических лиц по графику: понедельник с 08:20–11:20, четверг с 10:00–13:00 (обращаться необходимо в каб. 221 Управления по адресу: г. Москва, Триумфальная пл., д.1).
Направление заявки на рассмотрение проектной документации по частичным изменениям на фасадах объектов недвижимости осуществляется в режиме окна «приема корреспонденции» на первом этаже в вестибюле здания МКА. Прием указанной документации происходит в приемные дни в кабинете 221 Управления. Приемный день Управления обеспечения Градостроительно-земельной комиссии — четверг, с 10:00–13:00 (кабинет 602 Управления).
Узнать о прохождении документов и сроках их выдачи можно через канцелярию Москомархитектуры по телефону. Официальные справки по движению документации выдаются канцелярией Москомархитектуры c понедельника по четверг с 14:00 до 17:00 по пятницам — с 14:00 до 15:45.
Watch this video on YouTube
Плата для преобразования тока 4..20 мА в напряжение
После продолжительных поисков мне удалось найти на Aliexpress модуль, реализующий преобразование ток 4..20 мА в напряжение и достаточно защищенный от разных напастей. Приобретал у этого продавца.
Напряжение питания модуля 7-36V. Если выставлен диапазон выходного напряжения 10 V, то напряжение питания должно быть не меньше 12 V.
Преобразователь тока 4..20 мА в напряжение для подключения к АЦП микроконтроллера
На плате распаяно:
- Прецизионный резистор на котором замеряется падение напряжения.
- Защита входа от ошибки с полярностью.
- Защита от превышения напряжения >5 V.
- Усилитель, обеспечивающий напряжение на выходе в определенных диапазонах, заданных джамперами.
Настройка платы на нужный диапазон выходного напряжения производится джамперами.
- ON: jumper cap buckles on the two jumper pins — джампер закорочен
- OFF: two jumper pins without the jumper cap — джампер снят
Range, Volt | J1, перемычка 1-2 | J1, перемычка 3-4 |
0 — 2.5 | ON | ON |
0 — 3.3 | OFF | OFF |
0 — 5.0 | ON??? | ON |
0 — 10.0 | ON | OFF |
Для точной настройки преобразователя тока 4..20 мА в напряжение нужно подобрать значения двух потенциометров: ZERO и SPAN, соответствующие нулевому и максимальному значению тока на входе. Потенциометры претензионные с широким шагом.
- При минимальном токе на входе (0 mA или 4 mA), вращая потенциометр ZERO, настроить нужное напряжение на выходе, соответствующее заданному току нуля. Вращение по часовой стрелке увеличивает напряжение на выходе.
- Я не рекомендую выставлять 0 Вольт при минимальном токе 4 мА, поскольку в этом случае микроконтроллер не сможет определить оборван ли кабель к датчику или он действительно показывает минимальные значения.
- При максимальном токе в 20 мА, вращая переменное сопротивление SPAN, подбирается максимальное значение в выствленном джамперами диапазоне. Вращение по часовой стрелке увеличивает напряжение на выходе.
Преобразовать микроампер в миллиампер (мкА в мА):
С помощью этого калькулятора можно ввести значение для конвертации вместе с исходной единицей измерения, например, ‘159 микроампер’. При этом можно использовать либо полное название единицы измерения, либо ее аббревиатуруНапример, ‘микроампер’ или ‘мкА’. После ввода единицы измерения, которую требуется преобразовать, калькулятор определяет ее категорию, в данном случае ‘Электрический ток’. После этого он преобразует введенное значение во все соответствующие единицы измерения, которые ему известны. В списке результатов вы, несомненно, найдете нужное вам преобразованное значение. Как вариант, преобразуемое значение можно ввести следующим образом: ‘4 мкА в мА‘ или ’88 мкА сколько мА‘ или ’64 микроампер -> миллиампер‘ или ‘1 мкА = мА‘ или ’36 микроампер в мА‘ или ’74 мкА в миллиампер‘ или ’68 микроампер сколько миллиампер‘. В этом случае калькулятор также сразу поймет, в какую единицу измерения нужно преобразовать исходное значение. Независимо от того, какой из этих вариантов используется, исключается необходимость сложного поиска нужного значения в длинных списках выбора с бесчисленными категориями и бесчисленным количеством поддерживаемых единиц измерения. Все это за нас делает калькулятор, который справляется со своей задачей за доли секунды. Кроме того, калькулятор позволяет использовать математические формулы
В результате, во внимание принимаются не только числа, такие как ‘(60 * 95) мкА’. Можно даже использовать несколько единиц измерения непосредственно в поле конверсии
Например, такое сочетание может выглядеть следующим образом: ‘159 микроампер + 477 миллиампер’ или ’89mm x 99cm x 93dm = ? cm^3′. Объединенные таким образом единицы измерения, естественно, должны соответствовать друг другу и иметь смысл в заданной комбинации.
Если поставить флажок рядом с опцией ‘Числа в научной записи’, то ответ будет представлен в виде экспоненциальной функции. Например, 1,294 538 259 824 6 × 10 25 . В этой форме представление числа разделяется на экспоненту, здесь 25, и фактическое число, здесь 1,294 538 259 824 6. В устройствах, которые обладают ограниченными возможностями отображения чисел (например, карманные калькуляторы), также используется способ записи чисел 1,294 538 259 824 6E+25. В частности, он упрощает просмотр очень больших и очень маленьких чисел. Если в этой ячейке не установлен флажок, то результат отображается с использованием обычного способа записи чисел. В приведенном выше примере он будет выглядеть следующим образом: 12 945 382 598 246 000 000 000 000. Независимо от представления результата, максимальная точность этого калькулятора равна 14 знакам после запятой. Такой точности должно хватить для большинства целей.
Карта сайта
- РЕПЕТИТОР ПО ФИЗИКЕ ОНЛАЙН
- КАК РЕШАТЬ ЗАДАЧИ ПО ФИЗИКЕ
- ПОДГОТОВКА К ЕГЭ Пособия для подготовки
- РАЗБОР ДЕМОВЕРСИИ ЕГЭ 2021
ПОДГОТОВКА К ОГЭ
- Пособия для подготовки
Физика 7 класс
- Теория — конспект
Задачи по темам: 1. Физические величины
2. Строение вещества
3. Взаимодействие тел
4. Давление твердых тел, жидкостей и газов
Физика 8 класс
- Теория — конспект
Задачи по темам: 1. Тепловые явления
2. Электрические явления
Физика 9 класс
- Теория — конспект
Опорные конспекты Прямолинейное равномерное движение
Равноускоренное движение
Равномерное движение. Анализ графика.
Движение по окружности
Основы динамики. Законы Ньютона
Расчет ускорения свободного падения
Анализ задачи с лифтом
Задачи по темам:
- 1. Законы взаимодействия и движения
2. Колебания и волны
Физика 10 класс
Физика 11 класс
ЗАДАЧИ ПО ФИЗИКЕ
- 7 класс
8 класс
9 класс
УЧЕБНИКИ ПО ФИЗИКЕ
- 7 класс
8 класс
9 класс
10 класс
11 класс
ЗАДАЧНИКИ ПО ФИЗИКЕ
ВПР по физике 2021 г.
ПОЛИТИКА КОНФИДЕНЦИАЛЬНОСТИ
Какой тип расцепителя выбрать?
По внутреннему исполнению дифы и УЗО делятся на два типа: электронные и электромеханические. Вопреки распространенному заблуждению, тип расцепителя не влияет на рабочие параметры и технические характеристики. Какая же между ними разница?
Электромеханический расцепитель срабатывает за счет дифференциального трансформатора. При возникновении утечки в его вторичной обмотке возникает напряжение, действующее на поляризованное реле, расцепляющее контакты.
Электронный срабатывает только при наличии напряжения на фазе. В корпусе стоит микросхема с усилителем, с питанием от внешней сети. При потерях электроэнергии микросхема подает сигнал на механизм отключения, расцепляющий фазу. Такая схема стоит дешевле.
Главное отличие в том, что если сеть будет обесточена, то электронный диф не сработает. Но возможна ли в таком случае утечка? Чисто теоретически, да, за счет энергии накопленной в конденсаторах электроники, подключенной в сеть. Это очень редкие случаи, и скорее, исключения из правил.
На форумах часто можно найти нарекания на надежность электронных дифавтоматов, якобы не всегда срабатывающих. В большинстве случаев, это из-за неправильности подключения. Согласно ПУЭ, к дифзащите должна обязательно подключаться и фаза, и ноль. Если не подключить ноль, она будет работать как автомат, но нет гарантии, что сработает как УЗО. Вывод: при правильном подключении, все будет работать, независимо от конструкции расцепителя.
Основные параметры запоминающих герконов
Наименование геркона | МКА-27601 | MKA-2060 |
Тип геркона | запоминающий | запоминающий |
Мощность импульса управления, Вт | — | 1,2 |
Длительность импульса управления, мс | 1,0 | 1,0 |
Максимальная коммутируемая мощность, Вт | 1,5 | 7,5 |
Максимальный пропускаемый ток, А | 0,35 | 0,25 |
Максимальное коммутируемое напряжение, В | 110 | 36 |
Максимальный коммутируемый ток, А | 0,1 | 0,25 |
Температура окружающей среды, °С | -60…+ 70 | -60…+ 125 |
Вибрационные нагрузки, диапазон частот, Гц | 1…600 | 1…3000 |
Вибрационные нагрузки, максимальное ускорение, м/с2 | 49 | 196 |
Длина и диаметр баллона, общая длина, мм | 27/3/42 | 20/3/42 |
Масса геркона, г | 0,6 | 0,5 |
Характеристики высоковольтных герконов и герконов повышенной мощности
Наименование геркона | МКА-52141 | МКА-52142 | МКА-52202 |
Тип геркона | высоковольтный | высоковольтный | мощный |
Магнитодвижущая сила срабатывания, А | 100…200 | 300 | 180…300 |
Время срабатывания, мс | 3,0 | 3,0 | 8,0 |
Максимальная коммутируемая мощность, Вт | 50 | 50 | 250 |
Максимальное коммутируемое напряжение, В | 5000 | 10000 | 380 |
Максимальный коммутируемый ток, А | 3,0 | 3,0 | 4,0 |
Электрическая прочность, В | 10000 | 15000 | 800 |
Сопротивление электрических контактов, Ом | 0,1 | 0,1 | 0,3 |
Температура окружающей среды, °С | -40…+85 | -60…+100 | -45…+60 |
Вибрационные нагрузки, диапазон частот, Гц | 1…600 | 1…60 | 1…10 |
Диаметр баллона, общая длина, мм | 53/5,4/80 | 52/5,5/90 | 52/7,0/0 |
Как пользоваться
Чтобы перевести ток в мощность, достаточно ввести номинальное напряжение и указать вторую известную величину. Калькулятор автоматически рассчитает неизвестный показатель и выведет результат.
Узнать напряжение и стандартную силу тока можно в технической документации устройства. Для приборов бытовой техники обычно указывается мощность, из которой также легко вычислить ток. Для удобства в калькуляторе можно переключать ватты на киловатты, а ампера на миллиамперы.
Расчет мощности электричества при ремонте и проектировании
Калькулятор расчета мощности двигателя автомобиля
Калькулятор перевода киловатт в лошадиные силы
Калькулятор перевода давления в бар на давление в мегапаскалях, килограмм силы, фунт силы и амосферах
Калькулятор расчета времени разряда АКБ
Онлайн калькулятор расчета времени зарядки АКБ (постоянным током), сколько заряжать аккумулятор
Источник
Поключение преобразователя тока в напряжение к ESP32
Подключаю землю от конвертера к пину G(ND) ESP32 DevKit, а Vout к пину ADC1_0 (GPIO36). В общем-то можно переносить код ESP8266 на ESP32 — он будет работать с парой правок: pin для чтения не 0, а 36 и поправочный коэффициент ориентировочно 3350. Точно откалибровать сложно. 12-битный АЦП достаточно точный, поэтому будет читать и малейшие изменения входного напряжения. Кроме того сам АЦП без откалиброванного опорного напряжения (reference voltage) не сможет обеспечить точные измерения.
void setup() { Serial.begin(115200); } int lastMillis = 0; void loop() { int currentMillis = millis(); if (currentMillis - lastMillis > 500) { float adcr = analogRead(A0); float val = adcr*20/3350; Serial.print("Read ADC pin : " + String(adcr) + "\t"); Serial.println("ReadADC, mA: \t" + String(val)); lastMillis = currentMillis; } }
Можно использовать другой вариант кода для измерения напряжения на ESP32. Но в этом случае поправочный коэффициент будет 3850:
#include <driver/adc.h> void setup() { Serial.begin(115200); adc1_config_width(ADC_WIDTH_BIT_12); adc1_config_channel_atten(ADC1_CHANNEL_0, ADC_ATTEN_DB_11); } int lastMillis = 0; void loop() { int currentMillis = millis(); if (currentMillis - lastMillis > 500) { float adcr = adc1_get_raw(ADC1_CHANNEL_0); float val = adcr*20/3850; Serial.print("Read ADC pin : " + String(adcr) + "\t"); Serial.println("ReadADC, mA: \t" + String(val)); lastMillis = currentMillis; } }
Для сглаживания шума в схемотехнику ESP32 производитель рекомендует добавить емкость 0.1 uF на вход АЦП, который задействован и использовать усреднение по нескольким отсчетам.
Проводим расчеты
Как уже говорилось, для начала исходные величины необходимо привести к единому представлены. Оптимальный вариант – к «чистым» значениям, то есть вольтам, амперам, ваттам.
Расчет для постоянного тока
Здесь – никаких сложностей. Формула была показана выше.
При расчете мощности по силе тока:
P = U × I
Если считается сила тока по известной мощности,
I = P / U
Расчет для однофазного переменного тока
Вот здесь может быть особенность. Дело в том, что некоторые виды нагрузок в работе потребляют не только обычную, активную мощность, но и так называемую реактивную. Упрощенно говоря, она затрачивается на обеспечение условий работы прибора – создание электромагнитных полей, индукции, заряда мощных конденсаторов. Интересно, что на само общее потребление электроэнергии эта составляющая особо не влияет, так как, образно говоря, «сбрасывается» обратно в сеть. Но вот для определения номиналов защитной автоматики, сечения кабеля – ее желательно принимать в расчет.
Для этого применяется специальный коэффициент мощности, иначе называемый косинусом φ (cos φ). Он обычно указывается в технических характеристиках приборов и устройств с выраженной реактивной составляющей мощности.
Значение коэффициента мощности (cos φ) на шильдике асинхронного электродвигателя.
Формулы с этим коэффициентом приобретают следующий вид:
P = U × I × cos φ
и
I = P / (U × cos φ)
У приборов, в которых реактивная мощность не используется (лампы накаливания, обогреватели, электроплиты, телевизионная и оргтехника и т.п.), этот коэффициент равен единице, и не влияет на результаты расчета. Но если для изделий, например, с электроприводами или индукторами этот показатель указан в паспортных данных, будет правильным принять его в расчет. Разница в показателях силы тока может быть довольно существенной.
Расчет для трехфазного переменного тока
Не будем углубляться в теорию и разновидности схем трёхфазных подключений нагрузки. Просто приведем несколько видоизмененные формулы, использующиеся для расчетов в таких условиях:
P = √3 × U × I × cos φ
и
I = P / (√3 × U × cos φ)
Чтобы нашему читателю было легче произвести необходимые расчеты, ниже размещены два калькулятора.
Для обоих общей исходной величиной является напряжение. А далее, в зависимости от направления расчета, указывается или замеренное значение тока, или известное значение мощности прибора.
Коэффициент мощности по умолчанию указан, равным единице. То есть для постоянного тока и для приборов, в которых используется только активная мощность, он оставляется как есть, по умолчанию.
Других вопросов по расчету, наверное, возникнуть не должно.
Калькулятор расчеты силы тока по известному значению потребляемой мощности
Перейти к расчётам
Укажите запрашиваемые значения и нажмите«РАССЧИТАТЬ СИЛУ ТОКА»
Напряжение питания
Потребляемая мощность
Расчет проводится:
— для цепи постоянного тока или для переменного однофазного тока
— для цепи переменного трехфазного тока
Коэффициент мощности (cos φ)
Калькулятор расчета потребляемой мощности по промеренному значению силы тока
Перейти к расчётам
Укажите запрашиваемые значения и нажмите«РАССЧИТАТЬ ПОТРЕБЛЯЕМУЮ МОЩНОСТЬ»
Напряжение питания
Сила тока
Расчет проводится:
— для цепи постоянного тока или для переменного однофазного тока
— для цепи переменного трехфазного тока
Коэффициент мощности (cos φ)
Полученные значения могут использоваться для дальнейшего подбора необходимого защитного или стабилизирующего оборудования, для прогнозов потребления энергии, для анализа правильности организации своей домашней электросети.
А пример, как рассчитываются параметры для выделенной линии с последующим подбором автоматического выключателя, хорошо показан в предлагаемом вниманию видеосюжете:
Унифицированный сигнал напряжения 0-10 В
При использовании этого типа сигнала для получения информации с датчика весь его (датчика) диапазон делится на диапазон напряжения 0-10 В. Например, датчик температуры имеет диапазоны -10…+70 °С. Тогда при -10 °С на выходе датчика будет 0 В, а при +70 °С — 10 В. Все промежуточные значения находятся из пропорции.
Это же верно для любого другого устройства. Например, если аналоговый выход частотного преобразователя настроен на передачу текущей скорости вращения двигателя — тогда 0 В у него на выходе означает, что двигатель остановлен, а 10 В, что двигатель крутится на максимальной частоте.
«Токовая петля»: унифицированный аналоговый сигнал 4-20 мА
Аналоговый сигнал 4-20 мА (ещё называют «токовая петля») так же как сигнал напряжения 0-10 В используется в автоматике для получения информации от датчиков и управления различными устройствами.
По сравнению с сигналом 0-10 В сигнал 4-20 мА имеет ряд преимуществ:
- Во-первых, токовый сигнал можно передать на большие расстояния в сравнении с сигналом 0-10 В, в котором происходит падение напряжения на длинной линии, обусловленное сопротивлением проводников.
- Во-вторых, легко диагностировать обрыв линии, т.к. рабочий диапазон сигнала начинается от 4 мА. Поэтому если на входе 0 мА — значит на линии обрыв.
История разработки
По проекту «Орион» проводились не только расчёты, но и натурные испытания. Это были лётные испытания моделей, движимых химическими взрывчатыми веществами. Модели называли «put-puts», или «hot rods». Несколько моделей было разрушено, но один 100-метровый полёт в ноябре 1959 года был успешен и показал, что импульсный полёт мог быть устойчивым. Модель высадилась на парашюте неповрежденной и находится в коллекции Смитсоновского национального музея авиации и космоса.
Схема ядерного заряда направленного действия, предполагаемого в качестве топливных элементов для «Ориона»
Аппарат представлял собой форму пули и имел массу 133 кг. Позади аппарата, за плитой, произведено 6 взрывов зарядов тринитротолуола по 1,04 кг каждый. Для придания начальной скорости аппарат запускался из миномёта, для чего требовалось 4,52 кг пороха.
Также для исследования прочности тяговой плиты проведены испытания на атолле Эниветок. Во время ядерных испытаний на этом атолле покрытые графитом стальные сферы размещены в 9 м от эпицентра взрыва. Сферы после взрыва найдены неповреждёнными, тонкий слой графита испарился (аблировал) с их поверхностей.
Номинальное значение и класс дифавтомата
Эти показатели отвечают на вопросы:
- Как быстро сработает дифавтомат при перегрузке?
- При каком значении тока сработает дифавтомат?
На рынке можно встретить классы А,В,С,D. А — самый быстрый, D — самый долгий. Для бытового использования применяют в основном класс В и класс С. Почему так? Если Вы поставите автомат класса А в квартире (хотя стоит он в разы дороже В и С), то каждый раз когда Вы будете включать пылесос, дифавтомат будет срабатывать. Это связано с тем, что при запуске пылесоса, ток в сети резко возрастает на короткий период времени. Но класс А очень чувствительный и поэтому тут же сработает.
Если поставите класс D — устройство будет реагировать не достаточно оперативно.
Что касается номинального значения, то тут все зависит от Ваших задач.
Кнопка «Тест»
Должна присутствовать на всех дифавтоматах. Осуществляет имитацию утечки тока. Производители рекомендуют нажимать ее хотя бы раз в три месяца.
Тип срабатывания дифавтомата
Данная характеристика означает, на какие токи реагирует дифавтомат.
Тип А — такое устройство реагирует на переменный и импульсный ток. Стоит в разы дороже типа АС. Иногда производители стиральных машин рекомендуют устанавливать такие устройства на линию стиралки. Причина этому — стиральная машина как раз создает импульсный ток (то есть ток, то нет).
Тип АС — самый популярный вариант. Реагирует на переменный ток.
Тут все просто — если нет специальных инструкций или устройств — устанавливайте дифавтоматы типа АС.
Ток утечки
Данный показатель означает насколько чувствителен дифавтомат. Как правило, используют дифавтоматы с утечкой 30мА (миллиампер). Такая учтена оптимальна для защиты человека — не слишком чувствителен для ложных срабатываний, но достаточно чувствителен, чтобы защитить человека от удара током. НАмного реже можно встретить дифавтоматы на 10, 100 и 300 мА. Полагаем, что это связано со спросом на устройства.
Тип устройства дифавтомата
Данная характеристика означает, каким образом реагирует дифавтомат на утечку тока. Тут можно выделить две основных категории
Электромеханические дифавтоматы. Самый популярный вариант. Как правило, стоят дороже электронных. Такие дифавтоматы срабатывают на утечку вне зависимости от наличия напряжения в сети. Считаются более надежными решениями.
Электронные дифавтоматы. Такой тип устройства реагирует только при наличии напряжения в сети. Это означает, что при обрыве нуля дифавтомат не будет защищать от утечки тока. Такие дифавтоматы представлены в сериях Legrand RX и Schneider Easy9.
Для того, чтобы понять, какой тип дифавтомата перед Вами, необходимо изучить схему.
У электронных дифавтоматов на схеме работы всегда изображена плата с усилителем в виде треугольника (это условное обозначение усилителей по ГОСТу).
Мы рекомендуем использовать электромеханические дифавтоматы. Они более надежны и стоят ненамного дороже электронных.
Условное обозначение герконов
- первый элемент — определяет условное наименование геркона. МК — магнитоуправляемый контакт герметизированный, КЭМ — контакт электромагнитный, КМГ — магнитоуправляемый контакт с повышенным контактным нажатием (для коммутации больших токов — более 5 А);
- второй элемент — указывает на систему коммутации геркона: А — замыкающий, В — размыкающий, С — перекидной, Д — переходной;
- третий элемент — буква «Р» присутствует только в ртутных герконах;
- четвертый элемент — двузначное число показывает длину баллона в миллиметрах;
- пятый элемент — указывает на функциональное назначение геркона: 1 — малой и средней мощности, 2 — повышенной мощности, 3 — мощные, 4 — высоковольтные, 5 — высокочастотные, 6 — «с памятью», 7 — специальные (с повышенной устойчивостью к внешним факторам и характеру нагрузки), 8 — измерительные.
- шестой элемент — указывает порядковый номер разработки.
По типу контактов различают герконы замыкающие и переключающие, по состоянию поверхности контактов — сухие и жидкостные. Внутри баллона сухих герконов находятся инертные газы. Контакты представляют собой ферромагнитные пружины, покрытые ценными металлами. Герконы подразделяются также на маломощные (коммутируемая мощность до 60 Вт) и повышенной мощности (до 1000 Вт), низкочастотные и высокочастотные, низковольтные (коммутируемое напряжение до 250 В) и высоковольтные (свыше 250 В), имеются герконы с «памятью» и специальные. Далее приводим справочные параметры отечественных герконов, а в конце статьи — импортных герконов-реле.
Параметры замыкающих герконов стандартного и промежуточного типов
Наименование геркона | КЭМ-1 | КЭМ-6 | МК-36701 | МКА-27101 |
Тип геркона | стандартный | стандартный | промежуточный | промежуточный |
Магнитодвижущая сила срабатывания, А | 55…110 | 38…50 | 50…80 | 30…60 |
Время срабатывания, мс | 3 | 2 | 2 | 1,5 |
Максимальная коммутируемая мощность, Вт | 30 | 12 | 21 | 12 |
Максимальное коммутируемое напряжение, В | 220 | 150 | 100 | 110 |
Максимальный коммутируемый ток, А | 1 | 0,25 | 0,35 | 0,35 |
Электрическая прочность, В | 500 | 500 | — | 500 |
Сопротивление электрических контактов, Ом | 0,08 | 0,1 | 0,07 | 0,12 |
Максимальная частота коммутаций, Гц | 100 | 20 | 50 | 100 |
Температура окружающей среды, °С | -60…+125 | -60…+125 | -60…+100 | -60…+100 |
Вибрационные нагрузки, диапазон частот, Гц | 1…600 | 1…50 | 1…600 | 1…600 |
Вибрационные нагрузки, максимальное ускорение, м/с2 | 98 | 98 | 98 | 98 |
Диаметр баллона, общая длина, мм | 50/80 | 36/63,5 | 36/63,5 | 27/45,6 |