Arduino nano распиновка

Оглавление

Объяснения программ для плат Arduino UNO и Arduino Nano

Для программирования обоих плат используется среда Arduino IDE. Убедитесь в том, что вы выбрали правильный порт из пункта меню Tools->Port и правильный тип платы из пункта меню Tools->Board.

Полный код программ приведен в конце статьи, здесь же мы рассмотрим их основные фрагменты. Видео, демонтсрирующее работу проекта, также приведено в конце статьи.

Объяснение программы для платы Arduino UNO (ведущей)

В программе для ведущей стороны нам просто необходимо считывать значение напряжения с выхода потенциометра, подключенного к аналоговому контакту A0 и затем с помощью функции SerialWrite передавать их модулю RS-485 через контакты последовательного порта (0,1) платы Arduino UNO.

Инициализация последовательной связи на контактах (0,1) производится с помощью следующей команды:

Arduino

Serial.begin(9600);

1 Serial.begin(9600);

Для считывания аналогового значения на контакте A0 платы Arduino UNO и его сохранения в переменной potval используется команда:

Arduino

int potval = analogRead(pushval);

1 intpotval=analogRead(pushval);

Перед передачей значения переменной potval по последовательному порту необходимо на контактах DE и RE модуля RS-485 установить напряжение высокого уровня (HIGH). Данные контакты подключены у нас к контакту 8 платы Arduino UNO, поэтому просто используем команду:

Arduino

digitalWrite(enablePin, HIGH);

1 digitalWrite(enablePin,HIGH);

Далее просто передаем по последовательному порту значение переменной potval.

Arduino

Serial.println(potval);

1 Serial.println(potval);

Объяснение программы для платы Arduino Nano (ведомой)

На ведомой стороне (Slave side) значение переменной целого типа, полученное от ведущего модуля RS-485, можно будет считать на контактах последовательного порта связи (0,1) платы Arduino Nano. Просто считываем эти значения и сохраняем их в переменной. Принятые значения будут в диапазоне 0-1023, поэтому преобразуем их к диапазону 0-255 чтобы управлять яркостью свечения светодиода с помощью широтно-импульсной модуляции (ШИМ).

Затем это конвертированное значение мы с помощью функции AnalogWrite подаем на контакт D10 (является ШИМ-контактом), к оторому подключен светодиод – таким образом мы управляем яркостью его свечения. Также эти значения мы будем показывать на экране ЖК дисплея 16х2.

Для того, чтобы модуль RS-485, подключенный к ведомой плате Arduino, мог принимать эти значения от ведущего модуля, необходимо на его контактах DE и RE установить напряжение низкого уровня (LOW). Для этого просто устанавливаем LOW на контакте D8 (enablePin) платы Arduino Nano.

Arduino

digitalWrite(enablePin, LOW);

1 digitalWrite(enablePin,LOW);

Для считывания значения из последовательного порта и сохранения его в переменной используем команду:

Arduino

int pwmval = Serial.parseInt();

1 intpwmval=Serial.parseInt();

Затем конвертируем это значение из диапазона 0-1023 в диапазон 0-255 и сохраняем полученное значение в переменной:

Arduino

int convert = map(pwmval,0,1023,0,255);

1 intconvert=map(pwmval,,1023,,255);

Затем подаем это значение на контакт D10, к которому подключен светодиод:

Arduino

analogWrite(ledpin,convert);

1 analogWrite(ledpin,convert);

Для отображения этого значения на экране ЖК дисплея 16×2 используем следующую последовательность команд:

Arduino

lcd.setCursor(0,0);
lcd.print(«PWM FROM MASTER»);
lcd.setCursor(0,1);
lcd.print(convert);

1
2
3
4

lcd.setCursor(,);

lcd.print(«PWM FROM MASTER»);

lcd.setCursor(,1);

lcd.print(convert);

Arduino.ru

Язык программирования устройств Ардуино основан на C/C++. Он прост в освоении, и на данный момент Arduino — это, пожалуй, самый удобный способ программирования устройств на микроконтроллерах.

Базовые и полезные знания, необходимые для успешного программирования под платформу Arduino:

  • Начало работы с Arduino в Windows
  • Работа с Arduino Mini
  • Цифровые выводы
  • Аналоговые входы
  • Широтно-импульсная модуляция
  • Память в Arduino
  • Использование аппаратных прерываний в Arduino
  • Перепрошивка контроллера Atmega8U2 для Arduino Uno и Mega2560
  • Переменные
  • Функции
  • Создание библиотек для Arduino
  • Использование сдвигового регистра 74HC595 для увеличения количества выходов
  • Прямое управления выходами через регистры микроконтроллера Atmega

Справочник языка Ардуино

Язык Arduino можно разделить на три раздела:

Операторы

  • setup()
  • loop()
Управляющие операторы
  • if…else
  • for
  • switch case
  • while
  • do… while
  • break
  • continue
  • return
  • goto
Синтаксис
  • ; (semicolon)
  • {} (curly braces)
  • // (single line comment)
  • /* */ (multi-line comment)
Арифметические операторы
  • = (assignment)
  • + (addition)
  • — (subtraction)
  • * (multiplication)
  • / (division)
  • % (modulo)
Операторы сравнения
  • (equal to)
  • (not equal to)
  • < (less than)
  • > (greater than)
  • <= (less than or equal to)
  • >= (greater than or equal to)
Логические операторы
  • && (И)
  • || (ИЛИ)
  • ! (Отрицание)
Унарные операторы
  • (increment)
  • (decrement)
  • (compound addition)
  • (compound subtraction)
  • (compound multiplication)
  • (compound division)

Данные

Константы
  • HIGH | LOW
  • INPUT | OUTPUT
  • true | false
  • Целочисленные константы
  • Константы с плавающей запятой
Типы данных
  • boolean
  • char
  • byte
  • int
  • unsigned int
  • word
  • long
  • unsigned long
  • float
  • double
  • string — массив символов
  • String — объект класса
  • массив (array)
  • void
Преобразование типов данных
  • char()
  • byte()
  • int()
  • long()
  • float()
Область видимости переменных и квалификаторы
  • Область видимости
  • static
  • volatile
  • const

Функции

Цифровой ввод/вывод
  • pinMode()
  • digitalWrite()
  • digitalRead()
Аналоговый ввод/вывод
  • analogRead()
  • analogReference()
  • analogWrite()
Дополнительные фунции ввода/вывода
  • tone()
  • noTone()
  • shiftOut()
  • pulseIn()
Работа со временем
  • millis()
  • micros()
  • delay()
  • delayMicroseconds()
Математические функции
  • min()
  • max()
  • abs()
  • constrain()
  • map()
  • pow()
  • ()
  • sqrt()
Тригонометрические функции
  • sin()
  • cos()
  • tan()
Генераторы случайных значений
  • randomSeed()
  • random()
Внешние прерывания
  • attachInterrupt()
  • detachInterrupt()
Функции передачи данных

Serial

Библиотеки Arduino

Servo — библиотека управления сервоприводами. EEPROM — чтение и запись энергонезависимой памяти микроконтроллера. SPI — библиотека, реализующая передачу данных через интерфейс SPI. Stepper — библиотека управления шаговыми двигателями.

Характеристики Arduino Nano

Микроконтроллер Atmel ATmega168 или ATmega328
Рабочее напряжение (логическая уровень) 5 В
Входное напряжение (рекомендуемое) 7-12 В
Входное напряжение (предельное) 6-20 В
Цифровые Входы/Выходы 14 (6 из которых могут использоваться как выходы ШИМ)
Аналоговые входы 8
Постоянный ток через вход/выход 40 mAh с одного вывода и 500 mAh со всех выводов
Флеш-память 16 Кб (ATmega168) или 32 Кб (ATmega328) при этом 2 Кб используются для загрузчика
ОЗУ 1 Кб (ATmega168) или 2 Кб (ATmega328)
EEPROM 512 байт (ATmega168) или 1 Кб (ATmega328)
Тактовая частота 16 МГц
Размеры 1.85 см x 4.2 см

В первую очередь в разговоре о характеристиках нужно отметить, что Нано выпускается в различных версиях и самые распространённые:

  • Nano v.2;
  • Nano v.3.

Главное отличие – в самом микроконтроллере. Младшая версия использует Atmega168, Atmega328. Основные отличия чипов – это объём Flash-памяти:

  • mega 328: Flash-память – 32 кб, ПППЗУ – 1024 и ОЗУ – 2 кб;
  • mega 168: Flash-память – 16 кб, ПППЗУ – 512 и ОЗУ – 1 кб.

ПППЗУ — это перепрограммируемые запоминающее устройство.

Главный конкурент Arduino Nano по размеру – это Arduino Micro. В целом они похожи, но у «микро» интерфейс SPI разведен на другие пины, как и шина I2C, а также изменено количество выводов прерываний. В целом, платы похожи размерами, но различны соотношения сторон, а также некоторые схемотехнические нюансы.

Arduino Nano имеет 8 аналоговых входов, они могут использоваться как цифровой выход, 14 цифровых из которых 6 могут работать как широтно-импульсный модулятор (ШИМ), еще два задействованы под I2C и 3 под SPI.

В противоположном конце платы от разъёма микро-юсб расположена колодка Arudino ICSP для прошивки микроконтроллера.

ШИМ выходы и транзисторы помогут вам: регулировать обороты двигателя, яркость светодиодов, мощность нагревателей и многое другое. А аналоговые входы позволят читать значения с аналоговых датчиков, таких как:

  • фоторезисторы;
  • терморезисторы;
  • термопары;
  • измерители влажности;
  • датчики давления и другие.

Выходы Digital 2 и 3 могут быть использованы для внешних прерываний

Это такие сигналы, которые сообщают микроконтроллеру о каком-либо важном событии. По этим сигналам вызывается программа обработки прерывания и выполняются необходимые действия, например, выход из режима энергосбережения и выполнение вычислений

На базе платы Nano получится отличный миниатюрный программатор Arduino ISP, для прошивки целого ряда контроллеров.

Установка ПО и драйверов

Для ОС семейства Linux установка драйверов не требуется, а вот для ОС Windows драйвер может потребоваться. У меня стоит Kubuntu 15.04 и Windows 10, устройство определилось без проблем и отдельно драйвера устанавливать не пришлось.

Программное обеспечение будем использовать оригинальное от Arduino. ПО бесплатно и свободно для скачивания.

Процесс установки проводил по инструкции от Arduino, но некоторые шаги пропустил из-за ненадобности выполнения:

  1. Скачиваем ПО вот здесь и устанавливаем на компьютер;
  2. Подключаем Arduino Nano к компьютеру посредством USB-кабеля, после подключения на плате загорится зеленый светодиод (PWR);
  3. Если устройство не обнаружилось или обнаружилось как неизвестное устройство, то необходимо установить драйвер. Как писал выше у меня оборудование установилось без плясок и определилось как USB-SERIAL CH340. Описание установки драйвера опушу, очень много материала в интернете;
  4. Запускаем приложение Arduino и переходим в меню «Инструменты — Порт», и указываем необходимый порт, для меня это СОМ3.

Подключение вашей платы Arduino к компьютеру

После того как вы установили Arduino IDE на свой компьютер следующим логичным шагом будет подключение платы Arduino UNO к компьютеру. Чтобы сделать это просто используйте кабель для программирования (синего цвета) и соедините его с платой Arduino и USB портом вашего компьютера.

Синий кабель для программирования может выполнять следующие три функции:

  1. Он запитывает плату Arduino UNO, то есть чтобы обеспечить выполнение программ на ней необходимо просто запитать ее с помощью USB кабеля.
  2. Через него программируется микроконтроллер ATmega328, находящийся на плате Arduino UNO. То есть код программы пересылается из компьютера в микроконтроллер именно по этому кабелю.
  3. Он может функционировать в качестве кабеля для последовательной связи, то есть с его помощью можно передавать данные с Arduino UNO в компьютер – это полезно для целей отладки программы.

После того как вы подадите питание на плату Arduino UNO на ней загорится маленький светодиод – это свидетельствует о том, что на плату подано питание. Также вы можете заметить как мигает другой светодиод – это результат работы программы по управлению миганием светодиода, которая по умолчанию загружена в вашу плату ее производителем.

Поскольку вы подключаете плату Arduino в первый раз к компьютеру необходимо некоторое время чтобы драйвера для нее успешно установились. Чтобы проверить правильно ли все установилось и определилось откройте «Диспетчер устройств (Device manager)» на вашем компьютере.

В диспетчере устройств откройте опцию «Порты» “Ports (COM & LPT)”, кликните на ней и посмотрите правильно ли отображается там ваша плата.

При этом стоит отметить, что не стоит обращать внимание на то, какой номер порта отобразился у вашей платы Arduino – он может, к примеру, выглядеть как CCH450 или что то подобное. Этот номер порта просто определяется производителем платы и больше ни на что не влияет

Если вы не можете в диспетчере устройств найти опцию “Ports (COM & LPT)”, то это означает, что ваша плата не корректно определилась компьютером. В большинстве случает это означает проблему с драйверами – по какой то причине они автоматически не установились для вашей платы. В этом случае вы должны будете вручную установить необходимые драйверы.

В некоторых случаях в указанной опции диспетчера устройств может отобразиться два COM порта для вашей платы и вы не будете знать какой из них правильный. В этой ситуации отключите и снова подключите плату Arduino к компьютеру – какой из COM портов при этом будет появляться и исчезать, значит тот и правильный порт.

Следует помнить о том, что номер COM порта будет изменяться при каждом новом подключении вашей платы к компьютеру – не пугайтесь, в этом нет ничего страшного.

Этапы настройки Arduino

  1. Во-первых, установите IDE. Вы можете скачать IDE с сайта Arduino.
  2. Установите программное обеспечение на свой компьютер.
  3. Теперь запустите .exe файл Arduino IDE. IDE выглядит так:
  4. Напишите в редакторе кода свою программу и загрузите её в Arduino. Чтобы сделать это, необходимо подключить Arduino к компьютеру, используя USB кабель.
  5. В IDE выберите тип Arduino, который вы используете, через меню Tools (Инструменты) → Boards (Платы).
  6. Теперь проверьте свой код, нажав на значок «галки» вверху окна IDE, затем нажмите на соседний значок «стрелка вправо», чтобы скомпилировать и загрузить код в Arduino.

Внимание: возможно, вам понадобится установить драйвера, если ваша система не обнаружит Arduino

Преимущества и недостатки Ардуино Нано

Давайте перечислим все достоинства и недостатки платы. Начнем с плюсов этой миниатюрной платы.

Плюсы

  • Цена. Arduino Nano возможно купить менее чем за 1000 руб.
  • Кроссплатформенность. Программное обеспечение Arduino осуществляет работу на большинстве известных программ Windows, Macintosh OS X, Linux, являясь открытым приложением работающим на Java.
  • Простая среда программирования. Программная оболочка является достаточно простой в применении для новичков, но весьма гибкой для большинства продвинутых пользователей, чтобы оптимально быстро достичь нужного вам результата. Особенно комфортно в образовательной среде, где студенты достаточно легко разберутся с платформой, а преподаватели смогут разработать учебный курс.
  • Открытый исходный код. Язык может расширяется с помощью C++ библиотек, значительно более продвинутых, там специалисты могут самостоятельно создать свой собственный эксклюзивный инструментарий для Arduino на основе инновационного компилятора AVR C.
  • Открытые спецификации и схемы оборудования. Arduino основан на микроконтроллерах Atmel ATMEGA8 и ATMEGA168. Схемы модулей публикуются под лицензией Creative Commons, из-за этого опытные схемотехники могли создавать свои собственные версии модуля. Даже весьма неопытные пользователи смогут делать макетную версию данного модуля, чтобы понимать, каким же образом он осуществляет работу и экономит деньги.

Минусы

Из минусов отметим:

  • ПО. Довольно убогая программная оболочка.
  • Частота. Достаточно низкая частота имеющегося процессора.
  • Память. Малое количество «дисковой» флэш-памяти для создания программ.

Мощности Ардуино Нано  будет явно недостаточно для того, чтобы самостоятельно собрать какое-либо сложное изобретение, но может быть вполне достаточно для различных простейших систем, которые помогут потребителям быстро разобраться со всеми сложностями на пользовательском уровне. Также плата подойдет тем, чей форм-фактор проекта предполагает маленькие размеры.

Ардуино Нано — это микроконтроллеры, которые могут позволить самостоятельно заниматься робототехникой, а их основное преимущество — отсутствие необходимости докупать еще что-либо и малый размер.

Yenka

Yenka — отличный симулятор, который студенты и опытные пользователи могут использовать для обучения и преподавания основ программирования и схем. Как и большинство Ардуино симуляторов из нашего списка, он оснащен всеми необходимыми функциями для проверки эскизов/идей, отладки ваших проектов и разработки сложных проектов без ввода аппаратного обеспечения в эксплуатацию.

Yenka широко используется преподавателями, преподающими основы электроники, но из-за стоимости студентам она может быть не по карману. Это кросс-платформенный симулятор, который работает как в операционной системе Linux, так и в Windows. Несмотря на стоимость программа может быть идеальным тренажером Ардуино для вашего личного использования.

О плате

Ардуино Нано — это аналог Arduino Uno, которая также работает на чипе ATmega328P, но отличается формфактором платы, которая в 2-2,5 раза меньше, чем Уно (53 х 69 мм). Размеры подобны пачке сигарет, и позволяют легко собирать сложные схемы навесным монтажом, но после стадии создания макета идёт сборка действующих экземпляров, а для этого лучше подходит как раз Нано.

Размер Arduino Nano: 19 x 43 мм

Сравнение плат Arduino Uno и Arduino Nano

Отличие такой миниатюрной платы, заключается в отсутствии вынесенного гнезда для внешнего питания, но вместо него с легкостью можно подключиться напрямую к пинам. В плате используется чип FTDI FT232RL для USB-Serial преобразования и примененяется mini-USB кабель для связи с ардуино вместо стандартного. Связь с различными устройствами обеспечивают UART, I2C и SPI интерфейсы.

В остальном, способы взаимодействия и характеристики чипов совпадают с базовой моделью Уно, которая больше подходит для экспериментов, чем для реальных проектов. Нет более насущной проблемы для любителя электроники, чем желание красиво и компактно оформить своё устройство.

Платформа имеет контакты в виде пинов, поэтому ее легко устанавливать на макетную плату. Arduino Nano используется там где важна компактность, а возможностей Mini либо не хватает, либо не хочется заниматься пайкой.

Смотрите по теме: Индикатор уровня воды c помощью Arduino Nano

Что такое Arduino

К сожалению некоторые начинающие радиолюбители считают Arduino микроконтроллером, но это не совсем так. Давайте попробуем разобраться что же это.

Arduino представляет собой платформу разработки с открытым исходным кодом, которая состоит из простого в использовании оборудования и среды программирования. Наиболее распространенным типом оборудования является Arduino UNO, а среда программирования называется Arduino IDE. Кроме Arduino UNO существует еще достаточно много аналогичных плат — Arduino Mega, nano, mini, но в данной статье в целях обучения мы будем использовать именно Arduino UNO. А Arduino IDE – это как раз та программная среда, с помощью которой мы будем программировать плату Arduino UNO.

Шаг 4. Создаем печатную плату

Как только схема завершена, пришло время сделать печатную плату. Мы использовали веб-сайт JLCPCB (ссылка), чтобы сделать печатную плату. Эти ребята являются одними из лучших в производстве печатных плат в последние дни.

После завершения проектирования схемы преобразуйте ее в печатную плату и спроектируйте печатную плату на веб-сайте easyEDA (ссылка). Будьте терпеливы. Ошибка на этом шаге испортит вашу печатную плату. Проверьте несколько раз перед генерацией файла gerber. Вы также можете проверить 3d модель вашей платы здесь. Нажмите на создание файла gerber и оттуда вы можете напрямую заказать эту плату через JLCPCB. Загрузите файлы gerber, выберите правильную спецификацию, ничего не меняйте в этом разделе. Оставьте как есть. Это достаточно хорошие настройки для старта. Разместите заказ. Вы получите его через 1-2 недели.

Проекты Arduino для начинающих

Если посмотреть  на все проекты ардуино, информация о которых доступна в интернете, то можно их разделить на несколько основных групп:

Начальные учебные проекты, не претендующие на какое-то важное практическое использование, но помогающие разобраться в разных аспектах платформы.Мигающие светодиоды – маячок, мигалка, светофор и другие.
Проекты с датчиками: от простейших аналоговых до цифровых, использующих разнообразные протоколы для обмена данными.
Устройства регистрации и отображения информации.
Машины и устройства с сервоприводами и шаговыми двигателями.
Устройства с использованием различных беспроводных видов связи и GPS.

Проекты для автоматизации жилья – умные дома на Arduino, а также отдельные элементы управления домашней инфраструктурой.
Разнообразные автономные машины и роботы.
Проекты для исследования природы и автоматизации сельского хозяйства
Необычные и креативные – как правило, развлекательные проекты.

По каждой из этих групп можно найти множество самых разнообразных материалов в книгах и на сайтах. В этой статье мы начнем знакомство с описанием наиболее простых проектов, с которых рекомендуется стартовать начинающим.

Как создавать проект на ардуино

Проект Ардуино – это всегда сочетание электронной схемы, некоторых связанных друг с другом аппаратных и механических устройств, системы питания и программного обеспечения, управляющего всем этим хаосом. Поэтому приступая к работе, вы должны твердо понимать, что создавая устройство в одиночестве, вы должны будете стать и программистом, и электронщиком, и конструктором.

Если речь идет не об учебном проекте, то вы обязательно столкнетесь со следующими этапами реализации с такими вот задачами:

  • Придумать что-то, что будет полезно и (или) интересно для окружающих. Даже самый простой проект несет какую-то пользу – как минимум, он помогает изучать новые технологии.
  • Собрать схему, подключить модули друг к другу и к контроллеру.
  • Написать скетч (программу) в специальной среде и загрузить ее в контроллер.
  • Проверить, как все работает вместе, и исправить ошибки.
  • После тестирования – готовиться к созданию готового устройства. Это означает, нужно собрать устройство в каком-то пригодном для эксплуатации корпусе, предусмотреть систему питания, связи с окружающей средой.
  • Если вы собираетесь распространять созданные вами устройства, то придется также заняться дизайном, системой транспортировки, задуматься о безопасности использования необученными пользователями и обучением этих самых пользователей.
  • Если ваше устройство работает, оно протестировано и обладает какими-то преимуществами перед другими решениями, то можно попытаться сделать из вашего инженерного уже бизнес-проект, попробовать привлечь инвестиции.

Каждый из этих этапов создания проекта достоин отдельной статьи

Но мы уделим главное внимание этапам сборки электронных схем (основы электроники) и программирования контроллера

Электронные схемы

Электронные схемы обычно собираются с применением макетных плат, скрепляющих элементы друг с другом без пайки и скрутки. О том, как работают модули и схемы подключения можно узнать на нашем сайте. Обычно в описании проекта указаны способы монтажа деталей. Но для большинства популярных модулей есть уже десятки готовых схем и примеров в интернете.

Программирование

Создание и прошивка скетчей производится в специальной программе  – среде программирования.  Наиболее популярной версией такой среды является Arduino IDE. На нашем сайте вы сможете найти информацию о том, как скачать, установить и настроить эту программу.

Начало работы с Ардуино

Для того, что бы начать использовать Arduino необходимо приобрести плату Arduino или стартовый набор Arduino. Я советую выбрать стартовый комплект ардуино, так как он включает в себя не только микроконтроллер ардуино, но и беспаечную макетную плату, соединительные провода, кнопки, светодиоды и дополнительные детали. С таким набором вы сможет выполнить примеры из уроков по Arduino для начинающих. Это позволит вам быстро разобраться с принципами работы с Arduino.

После прохождения уроков вы будите знать как программировать Arduino, как обмениваться сигналами с другими модулями и устройствами. Вы сможете проектировать, а так же создавать ваши собственные устройства.

Arduino IDE

Для начала работы с Ардуино вам понадобится специальное программное обеспечение. Это среда для разработки прошивок Arduino IDE. В этой программе легко и удобно писать скетчи и загружать их на ваш микроконтроллер Ардуино. В среде разработки уже предустановленно большое количество примеров и дополнительных библиотек.

Ссылки на скачивание, инструкции по установке и настройке среды разработки есть на странице Arduino IDE.

Язык программирования Ардуино

Когда у вас есть на руках плата микроконтроллера и на компьютере установлена среда разработки, вы можете приступать к написанию своих первых скетчей (прошивок). Для этого необходимо ознакомиться с языком программирования.

Для программирования Arduino используется упрощенная версия языка C++ с предопределенными функциями. Как и в других Cи-подобных языках программирования есть ряд правил написания кода. Вот самые базовые из них:

  • После каждой инструкции необходимо ставить знак точки с запятой (;)
  • Перед объявлением функции необходимо указать тип данных, возвращаемый функцией или void если функция не возвращает значение.
  • Так же необходимо указывать тип данных перед объявлением переменной.
  • Комментарии обозначаются: // Строчный и /* блочный */

Подробнее о типах данных, функциях, переменных, операторах и языковых конструкциях вы можете узнать на странице по программированию Arduino. Вам не нужно заучивать и запоминать всю эту информацию. Вы всегда можете зайти в справочник и посмотреть синтаксис той или иной функции.

Все прошивки для Arduino должны содержать минимум 2 функции. Это setup() и loop().

Функция setup

Функция setup() выполняется в самом начале и только 1 раз сразу после включения или перезагрузки вашего устройства. Обычно в этой функции декларируют режимы пинов, открывают необходимые протоколы связи, устанавливают соединения с дополнительными модулями и настраивают подключенные библиотеки. Если для вашей прошивки ничего подобного делать не нужно, то функция все равно должна быть объявлена. Вот стандартный пример функции setup():

Функция loop

Функция loop() выполняется после функции setup(). Loop в переводе с английского значит «петля». Это говорит о том что функция зациклена, то есть будет выполняться снова и снова. Например микроконтроллер ATmega328, который установлен в большинстве плат Arduino, будет выполнять функцию loop около 10 000 раз в секунду (если не используются задержки и сложные вычисления). Благодаря этому у нас есть большие возможности.

Arduino UNO: порты ввода вывода, питание

Рабочее напряжение — 5 В при подключении через USB с любых устройств (компьютер, ноутбук, зарядка от смартфона и т.д.). При одновременном подключении внешнего адаптера (аккумулятора, кроны, блока питания), питание автоматически переключается, но плату можно по-прежнему программировать через компьютер. Рекомендуемое питание Arduino Uno от батареек или аккумулятора от 7 до 12 В.

Arduino Uno питание от блока питания 12 вольт

Arduino UNO: питание от внешнего источника

5V     – на пин Ардуино подает 5В, его можно использовать для питания устройств
3.3V – на пин подается напряжение 3.3В от внутреннего стабилизатора
GND – вывод земли
VIN  – пин для подачи внешнего напряжения
IREF – пин для информирования о рабочем напряжении платы

Можно питание на микроконтроллер подать через порт VIN с помощью проводов. «Плюс» от внешнего источника подается на порт VIN, а «Минус» на GND (заземление). Подача внешнего напряжения 5 Вольт на пин 5V не допустимо, так как питание Genuino Arduino Uno обходит стороной стабилизатор, что может привести к поломке. Все цифровые порты на плате выдают стабилизированное напряжение в 5 Вольт.