Как в домашних условиях сделать чпу станок на arduino

А как насчет взаимодействия

Удивительно слушать заявления некоторых умельцев, что для ЧПУ Ардуино не подходит, тем более, невозможен симбиоз mach3 arduino, якобы они не желают взаимодействовать.

Другие же уверены в противном: ардуину можно реализовать для ЧПУ при помощи трёх вариантов:

  1. Полностью автономный контроллер.
  2. Плата-интерпретатор отвечает за движения, но они рассчитываются на компьютере.
  3. Плата-транслятор (переходник) – выполняет роль виртуального ЛПТ-порта.

Многие пользователи в сети, у которых проблемная электроника, просят посоветовать им программу, чтобы станки под управлением таковой, могли работать чётко и бесперебойно. Фрезеры на станке призваны заготовку обрабатывать равномерно, выполняя сигналы программного блока.

Программа LaserGRBL.

Программа LaserGRBL предназначена для работы с лазерными станками с GRBL прошивкой. Это, наверно, и понятно из названия программы.

Описание программы LaserGRBL.

Кратко рассмотрим все основные возможности программы, а начнем с главного окна программы LaserGRBL.

  1. Главное меню
  2. Консоль. Аналог монитора порта.
  3. Кнопки управления. Можно добавлять свои. Из коробки идут всего 3 первые кнопки.
  4. Подключение к станку. Выбираем порт и скорость. Аналогично Arduino.
  5. Панель управления осями. Позволяет перемещать по осям, изменяя скорость и расстояние перемещения при одном нажатии на кнопку.
  6. Рабочее поле. Здесь выводится эскиз гравировки.
  7. Выбор файла для гравировки и процесс выполнения. Маленький серый треугольник — это кнопка запуска гравировки. Когда выбран файл для гравировки, кнопка меняет цвет на зеленый.

Настройка GRBL 1.1 в программе LaserGRBL.

Настроить прошивку GRBL 1.1 можно, по аналогии с настройкой, через монитор порта, для этого в программе LaserGRBL используем командную строку в консоли (2). Также есть более простой способ настройки, для этого заходим в пункт меню GRBL –> Конфигурация GRBL.

В открывшемся окне меняем значения в колонке «Значение». И после изменений нажимаем кнопку «Записать». Все настройки будут записаны в память микроконтроллера.

Данный инструмент также позволяет импортировать и экспортировать настройки, что помогает без проблем сохранить настройки и, при необходимости, загрузить обратно.

Управление осями в программе LaserGRBL.

В панели управления осями (5) можно управлять перемещением по оси X и Y, с помощью кнопок со стрелками.

Кнопка с изображением домика возвращает все оси в нулевую точку. С левой стороны вертикальный ползунок настраивает скорость перемещения. С правой стороны ползунок позволяет менять шаг перемещения по осям от 0,1 мм до 200 мм. При любом перемещении в консоли выводятся команды, которые выполняются, и которые уже выполнены.

Синий крестик на рабочем поле (6) показывает, где сейчас находится лазер.

Выбор файла для гравировки.

Для того, чтобы выбрать файл для гравировки, нужно нажать на иконку папки, в поле Выбор файла для гравировки (7).

Откроется окно выбора, затем выбираем нужный рисунок, или векторное изображение в формате .svg, после чего откроется окно настройки изображения для гравировки. Здесь можно поиграть с настройками и выбрать тот вариант, который вас устраивает. Также можно сделать гравировку только контура изображения.

Нажав кнопку «Далее», откроется всплывающее окно настройки скорости станка, и команды, которые нужно отравлять для работы лазера (M3 и M5). Также можно выставить максимальную мощность лазера. Я выставил 500, так как мой станок не быстро перемещается, и при этом лазер сильно прожигает. На половине мощности гравировка проходит максимально качественно.

После нажатия кнопки «создать», откроется основное окно программы, и на рабочем поле появится наш рисунок, с отображением всех перемещений станка при гравировке изображения.

Для запуска гравировки нужно нажать на кнопку «пуск», после чего начнется гравировка с отображением, в режиме реального времени, расположения лазера.

Также вы можете посмотреть, сколько, ориентировочно, гравировка займет времени, и сколько уже выполнено, в разделе «прогресс».

Добавляем дополнительные кнопки управления в программу LaserGRBL.

В программе есть стандартные кнопки управления (3), давайте добавим еще несколько необходимых, для комфортной работы с лазерным гравером. Ниже представлены иконки с командами.

Правой кнопкой мыши кликаем на нижнем поле программы, и нажимаем «Добавить кнопку». С левого края, нажимаем на пиктограмму и выбираем, из Папки «Иконки», изображение.

Далее, копируем его название, и открываем. Выбранное изображение появилось на месте пиктограммы. Далее, в поле «Всплывающая подсказка», добавляем текст подсказки. В поле GCode прописываем команду.

Проекты / Модификации

Почему рисунок «вылазит» за край стола или получается слишком мелким?

Довольно часто приходиться видеть как начинающие и не очень ЧПУшники пытаются высчитать масштабы изделия на стадии разработки станка. Пересчитывают градусы поворота мотора , шаг ШВП , длину пробега и еще массу параметров. Между тем существует простой метод добиться истинного масштаба на станке без таких трудоемких процедур. Этой статьей попытаюсь помочь всем энтузиастам ЧПУ станков.

Исходим из того ,что Вы уже определились какая мощность моторов устраивает Вас.

Итак устанавливаете имеющиеся моторы на ось станка

Устанавливаете любое ШВП которое Вы смогли купить или достать.

Если нет ШВП то устанавливаете любой винте «трапеция»

Шаг резьбы винта и угол поворота мотора не имеют значения !

Итак Ваш станок готов , подключен к компьютеру , программа ЧПУ запущена (в нашем случае это МАСН-3)

Рис1 окно настройки двигателей оси

Откройте программу «Блокнот» путь-(Пуск-все программы-стандартные-блокнот)

Наберите в нем программу

Сохраните программу под любым именем с расширением «txt»

Сохраняйте на «Рабочий стол» для быстрого поиска

Читать также: Соединитель ваго с защелкой

Загрузите программу в МАСН-3 (Файл-Открыть Gкоды).

Коснитесь ей заготовки с небольшим заглублением

Обнулите все координаты

Запустите написанную вами программу.

Станок начертит отрезок длинной 50мм

Замерьте полученный размер отрезка и поделите полученное число на число в окне программы МАСН-3 по пути ->«Шагединицы» в окне по адресу «Конфигурации» далее «Настройка двигателей»

(Первое слева снизу окно подписано «»)

число шагов на 1мм перемещения станка

Разделите это число на 50 (длинна вашего отрезка) и полученное число внесите

Отфрезеруйте отрезок еще раз отрезок и проверьте результат, при необходимости повторить настройки.

Пример

Выполнили файл «отрезок» длинна которого задана 50 мм.

Загрузили в МАСН-3

Получили на станке размер отрезка равным 55 мм.

Нужно привести его к 50 см (так как мы его задали изначально)

Открываем «Конфигурации» далее «Настройка двигателей» в окне «Шагединицы» видим число например 2000

Где 2000-имеющееся число в графе «Шагединицы» .

55 — полученный результат на станке (в мм).

36,36 = 1 шагу станка (1мм)

1818 = 50 шагам станка (50мм)

1818 — Это число вписываем в место 2000 в таблицу

Точная подгонка

Начертили на станке файл «отрезок» после корректировок проведенных выше.

1818 50,5 = 39,60

39,60 х 50 = 1980—Вписываем это число в таблицу

Вот и все Успехов !

Добро пожаловать на сайт открытого проекта по разработке станка с ЧПУ на базе Arduino своими руками

Проект Простой станок с ЧПУ на Ардуино задумывался для разработки, отладки и тестирования программного обеспечения, необходимого для работы станков с числовым программным управлением (ЧПУ).

Соответственно, хотелось потратить минимум денег на изготовление механической и электронной составляющих станка.

В качестве контроллера была выбрана плата Ардуино, ввиду её огромных возможностей по взаимодействию с различными устройствами.
Функционал Arduino легко расширяется благодаря возможности подключения огромного количества устройств, поддерживающих стандартные протоколы передачи данных и управления.
На официальном сайте arduino.cc опубликована исчерпывающая информация о подключении устройств к Ардуино, а также о программировании Arduino.

Фрезерные станки с ЧПУ, а точнее программы для станков с ЧПУ, работают с векторными изображениями, которые сами по себе довольно дорого стоят.
Это изначально сместило направление исследований на разработку фрезерного станка с ЧПУ, который работает с бесплатными растровыми изображениями (обычными файлами в формате bmp, jpg, gif и т.д.).
Собрав всё воедино получаем совершенно потрясающие характеристики:

  • низкая стоимость станка с ЧПУ (менее 100$ или 6000 руб без учёта стоимости компьютера);
  • лёгкая доступность всех деталей станка;
  • работа с растровыми изображениями, которые легко может создать любой человек в простом графическом редакторе (например Paint);
  • расширяемая платформа для разработки множества смежный систем;
  • в идеале программное обеспечение должно иметь возможность обработки фотографий и/или изображений, полученных с обычного сканера.

Изначально планировалось использовать станок с ЧПУ на ардуино для фрезерования плоских фигур, орнаментов и объёмных тел. Однако, впоследствии к станку был подключен контактный датчик для 3D-сканирования.
Затем, на станок был установлен лазерный модуль для гравирования / выжигания. И, наконец, станок с ЧПУ был превращён в 3D-принтер: для этого потребовалось установить дополнительный блок, который называется экструдер.

Таким образом, получаем не просто 3-хкоординатный станок для фрезерования с ЧПУ на Ардуино, а целую платформу, на базе которой легко собирается:

  • станок для фрезерования 2D-фигур и 3D-тел;
  • контактный 3D-сканер;
  • лазерный гравер / выжигатель с ЧПУ;
  • 3D-принтер.

На сайте выложены подробные схемы сборки станка с ЧПУ, включая его модификации, чертежи станка с ЧПУ, исходные коды программного обеспечения, а также исходные коды прошивок для Arduino.

Станок с ЧПУ на Ардуино и его модификации собирались своими руками. Для промышленных целей такой станок с CNC конечно не подойдёт, однако для штучного изготовления и освоения принципов работы механики и программного обеспечения подходит.

Кроме того, на сайте имеется отдельный раздел, посвящённый приобретению компонентов самодельного станка с ЧПУ и необходимых расходных материалов, где описано, где, как и по какой цене можно приобрести требуемые составляющие простого станка CNC.

Лазерный станок с ЧПУ на основе Arduino UNO

Всем доброго времени суток! Сегодня я хочу рассказать вам о том, как собрать лазерный станок с ЧПУ (числовое программное управление, то есть управление через компьютер). Делается он на основе CD-приводов и Arduino UNO. Он получается довольно маленьким и слабым в отличие от других лазерных станков. Но его хватит для выжигания на дереве, коже, пластмассе и на других легкоплавких материалах. Итак, приступим.

Для создания нам понадобится: 1 – два CD-привода. Их можно найти в старых запасах, либо купить у кого-нибудь. Лично я купил их на авито за 150 рублей.

2 – Arduino UNO.

3 – CNC шилд версии 3.0 либо другой.

4 – два драйвера шаговых двигателей. Я рекомендую использовать драйверы DRV8825, так как они имеют режим микрошага до 32.

5 – самой главной частью является лазер. Лазер мощностью 200-300 мВатт стоит около 500-700 рублей. 6 – блок питания 12 вольт и минимум 1.5 ампер.

Первый шаг – это конструкция станка. Тут все зависит от вашей фантазии и от материалов, которые имеете. Я сделал основание из корпуса от привода. Можно также сделать из дерева или пластмассы. Ось Х нужно закрепить над осью У

Очень важно выдержать все углы 90 градусов

Из приводов надо достать каретки

Обратите внимание на тип двигателя у каретки. Если он имеет 2 контакта, то он не подходит

Шаговый двигатель имеет 4 контакта.

Каретки закрепляем как на фото.

Сопряжаем шилд и ардуино. На шилде есть режим деления шага. Чтобы активировать этот режим, нужно установить перемычки. Вот фото режимов:

Устанавливаем драйверы на их законное место согласно ключу, то есть как на фото:

Подключаем двигатели. Возле посадочных мест есть 4 разъема, к которым и надо подключить.

Лазер подключается в зависимости от прошивки. Если в описании к вашей версии прошивки GRBL подписано наличие ШИМа, то подключать нужно к разъему Z+, иначе к Spn En. Так как лазер потребляет ток выше, чем выдает ардуино, нужно запитать его от внешнего источника. Я подключил с помощью транзистора KT805AM к USB. Вот схемка.

Кстати, шилд нужно запитывать блоком питания 12 вольт. На плате все подписано (куда подключать). Для компактности я разместил всю электронику под корпусом станка.

Лазер я закрепил стяжками на кусочек радиатора, который, в свою очередь, закреплен винтами на движущейся части каретки.

К нижней каретке нужно приделать рабочее поле. У меня это кусок доски деревянной.

Для того, чтобы во время работы линза лазера не закоптилась, я приделал кулер (он сдувает дым).

Переходим к программной части. Скачиваем с гитхаба прошивку GRBL нужной версии в виде архива. Распаковываем и для продолжения устанавливаем Arduino IDE (все ПО предоставлено в бесплатном доступе). Из архива копируем папку grbl и вставляем в папку lib (находится в корневой папке программы). Запускаем программу и в настройках выбираем com-порт к которому заранее подключили ардуино. В тех же настройках выбираем тип платы UNO. Во вкладке «скетч» выбираем Подключить библиотеку> GRBL. После этого нажимаем кнопку загрузить скетч и ждем. Поздравляю, плата прошита. Теперь ее нужно настроить. Открываем последовательный порт кнопкой «монитор порта». Выбираем снизу скорость 115200 бод. Далее в строку вводим «$» и отправляем. В ответ выводится список всех настроек пришивки. Нас интересуют пункты 100 и 101. Там нужно выбрать скорость. Рассчитывается она следующим образом: число шагов на оборот делим на длинну шага винта. Потом умножаем на микрошаг. Если вы выбрали микрошаг 32, то расчет такой: 20/3*32 = 213,333. Это значение записываем в строку: $100 = 213,333 и отправляем. Аналогично и для 101.

Готовимся к проверке. Скачиваем любую программу для работы с прошивкой grbl. Рекомендую grbl controller или GRBLmaster. В интернете можно найти инструкции по использованию этих программ, поэтому я на этом зацикливаться не буду. Проверяем как движутся каретки. Если их направление неправильное, то перетыкиваем местами их провода на плате. То есть первые два провода ставим на место последних двух и наоборот. Теперь попробуем выжечь что-нибудь! Я выжигаю на коже. Перед выжиганием настраиваем фокусировку лазера. Делается это просто. В программе включаем лазер и настраиваем до тех пор, пока точка не станет маленькой. Вот примеры моих работ:

p.s. Не забывайте про безопасность! Ни в коем случае не направляйте лазер на человека, иначе можно лишить его зрения. Рекомендую купить для работы с лазером специальные очки.

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Детали для сборки

  1. Двигатель с патроном и цангой. С одной стороны кулачковый патрон это очень удобно, но с другой он гораздо массивнее цангового зажима, то есть часто подвержен биениям и очень часто их приходится дополнительно балансировать.
  2. Фанерные детали. Ссылку на файлы для лазерной резки в формате dwg (подготовлено в NanoCAD) можно будет скачать в конце статьи. Достаточно просто найти фирму, которая занимается лазерной резкой материалов и передать им скачанный файл. Отмечу отдельно то, что толщина фанеры может меняться от случая к случаю. Мне попадаются листы которые немного тоньше 5мм, поэтому пазы я делал по 4,8мм.
  3. Напечатанные на 3D-принтере детали. Ссылку на файлы для печати деталей в stl-формате можно будет также найти в конце статьи
  4. Полированные валы диаметром 8мм и длиной 75мм — 2шт. на продавца с самой низкой ценой за 1м, которую я видел
  5. Линейные подшипники на 8мм LM8UU — 2шт
  6. Микропереключатель KMSW-14
  7. Винт М2х16 — 2шт
  8. Винт М3х40 в/ш — 5шт
  9. Винт М3х35 шлиц — 1шт
  10. Винт М3х30 в/ш — 8шт
  11. Винт М3х30 в/ш с головкой впотай — 1шт
  12. Винт М3х20 в/ш — 2шт
  13. Винт М3х14 в/ш — 11шт
  14. Винт М4х60 шлиц — 1шт
  15. Болт М8х80 — 1шт
  16. Гайка М2 — 2шт
  17. Гайка М3 квадратная — 11шт
  18. Гайка М3 — 13шт
  19. Гайка М3 с нейлоновым кольцом — 1шт
  20. Гайка М4 — 2шт
  21. Гайка М4 квадратная — 1шт
  22. Гайка М8 — 1шт
  23. Шайба М2 — 4шт
  24. Шайба М3 — 10шт
  25. Шайба М3 увеличенная — 26шт
  26. Шайба М3 гроверная — 17шт
  27. Шайба М4 — 2шт
  28. Шайба М8 — 2шт
  29. Шайба М8 гроверная — 1шт
  30. Набор монтажных проводов
  31. Набор термоусадочных трубок
  32. Хомуты 2.5 х 50мм — 6шт

ЧПУ станок из дерева

Для него нужна Аrduino uno R3, G-сode Sender и GRBL. Необходимо заранее подготовить материалы и компоненты: фанеру, гайки с болтами, резьбовой вал и стержни из стали, шарикоподшипники, ШД Nema 23 и драйвера к ним, источник питания 24 В, 15 А, втулки из капролона, фторопласта и металла, провода.

Многое, входящее в электронику, прислали из Китая.

Основанием служат бруски из древесины с глухими, сквозными отверстиями. Стальной резьбовой вал, установленный по центру станка, служит приводом для оси Х. В момент его вращения – каретка (рабочий стол) выполняет перемещение вдоль этой оси Х.

ВНИМАНИЕ: чём толще фанера или деревянный брусок, тем меньшей будет вибрация, выше точность позиционирования. Портал (ось Y) устанавливают на подвижном столе, фиксируя гайкой под столом

Ось Z служит для перемещения рабочего органа (он подает инструмент в вертикальном положении)

Портал (ось Y) устанавливают на подвижном столе, фиксируя гайкой под столом. Ось Z служит для перемещения рабочего органа (он подает инструмент в вертикальном положении).

Для сборки понадобятся болты и гайки. Не стоит склеивать поломанные делали, лучше их заменить новыми. Подключая Arduino, ШД и драйверы к каждому из них, надо предусмотреть и блоки питания для них. Загрузив и настроив код GRBL, можно открыть G-сode Sender и подключить Arduino к ПК. Плата готова участвовать в процессе управления чпу станком.

Создаем G-code для плоттера в программе Carbide Create.

Для того чтобы создать G-code для плоттера, воспользуемся программой Carbide Create. Данная программ позволяет создавать G-code для фрезерных ЧПУ станков. Для наших целей её тоже можно использовать, но с определёнными ограничениями, о которых расскажу по мере их возникновения.

Скачать программу Carbide Create.

Для того чтобы скачать программу, в поиске «Яндекс» указываем название программы «Carbide Create». Переходим на сайт разработчика.

Прокрутив страницу ниже, вы увидите заголовок «Carbide Create CAD/CAM Software». Нажимаем на кнопку «See Carbide Create», чтобы подробнее почитать о программе.

После чего вы получите письмо, на указанный ранее электронный адрес. В письме будет ссылка на скачивание программы «Click here to download Carbide Create».

После нажатия на которую вы сможете скачать программу для вашей операционной системы. К сожалению, для Linux версии нет.

Создание G-Code в программе Carbide Create.

Запускаем программу Carbide Create и выполним настройки. Для этого нажмем на иконку шестеренки, в блоке кнопок «Setup».

В открывшемся окне первым делом нужно настроить единицы измерение «мм», внизу окна и нажать на кнопку «Ок». Затем повторно открыть данное окно и произвести настройки размера рабочего поля станка. Поднятие оси Z, толщину заготовки и нулевую точку, в левом нижнем углу. Сохраняем настройки.

Затем загрузим векторное изображение, которое мы создали в программе Inkscape. Для этого в меню выбираем «File-> Open…».

Выбираем файл «Пример1» и нажимаем на кнопку «Открыть».

Чтобы начать работать с нашим изображением выделяем его.

На панели «Transform» находятся инструменты, которые позволят перемещать, вращать, изменять размер изображения.

Для создания G-Code необходимо перейти во вкладку «Toolpaths». Здесь на панели «2D Toolpaths», можно выбрать вид обработки. Нас интересует «Controur».

В открывшемся окне настройки обработки, нужно выбрать инструмент обработки. В программе обширная библиотека фрез. Выбираем любую с максимальной скоростью обработки, так как вручную задать скорость обработки мы не можем. Это один из основных минусов данной программы для создания кода, для плоттера. Но при этом большой плюс для составления управляющей программы для фрезерного станка.

После выбора инструмента, нужно указать высоту по оси Z и обработку по линии, и нажать на кнопку «Ок».

Обработка по контру создана. Сейчас нам нужно создать заштриховку. Для этого будем использовать операцию выборки для фрезерного станка.

В окне настройки, указываем параметры как на картинке. Это позволит сделать обработку максимально быстро.

Мы добавили 2 операции обработки, в конце каждой операции указанно ориентировочное время выполнения в минутах.

Для создания G-Code нажимаем на кнопку «Save GCode», указываем название файла «Пример1.nc» и сохраняем его.

G-Code готов, сейчас можно проверить что у нас получилось, но для этого понадобится управляющая программ для ЧПУ станка.

Что такое Arduino

Прежде всего, стоит разобраться, что такое Arduino.

Ардуино это:

  • название торговой марки аппаратуры, средств программирования, при помощи которых реально построить модели станков (в том числе, трехосевого), несложные системы автоматики и робототехники;
  • линейка продукции, наличие открытой архитектуры у которой позволит скопировать или дополнить уже существующие конструкции;
  • небольшая плата с собственным процессором и памятью;
  • аппаратная вычислительная платформа или же контроллер;
  • язык программирования, позволяющий разбирать различный софт (условно бесплатное ПО, свежие новости в области IT);
  • так называемый электронный конструктор.

Создавая на Ардуино устройства электроники, способные принимать сигналы от разных цифровых и аналоговых датчиков, подключенных к нему, как к основе. Поэтому в контексте данной статьи, речь будет идти о платах.

Скачать Arduino 1.8.6

IDE 1.8.6 появилась в августе 2021 года. По сравнению с предыдущей версией, в 1.8.6 было добавлено много улучшений.

Изменения в версии 1.8 6

Список дополнений и улучшений:

  • Улучшена производительность компиляции проектов за счет распараллеливания процессов и повторного использования скомпилированных фрагментов проекта.
  • Прочие улучшения интерфейса: Добавлены клавиатурные ускорители при прокрутке меню (нажмите клавишу ‘a’).
  • Добавлен скроллер в меню программирования.
  • Улучшение диалогового окна «Поиск/Замены»

Возможность выбора тем – традиционно устанавливаемых в соответствующую папку в виде архива.
Информация об ошибках выводится в более структурированном формате – с указанием не только строки, но и столбца.
Монитор порта теперь может показывать информацию о времени (timestamp)
Добавлены переводы для типов в библиотеках.
Улучшена функциональность работы с дисплеями высокой четкости (Hi-resolution) в Linux
Для пользователей Windows исправлены ошибки функциональности сборки проектов из файлов, хранящихся в облачном хранилище OneDrive.
Ускорен старт программы в случае использования виртуальных сетевых подключений
Улучшение в менеджере библиотек (поиск, установка).
Исправление множества небольших ошибок в интерфейсе, повышенная стабильность ядра.

Зачем нужны шилды

Обладатели самодельных устройств наслышаны о платах расширения – Arduino cnc shield, применение которых расширяет функционал фрезерного оборудования.

Обычно шилду изготавливают под форм-фактор платы. Используют и несколько шилдов одновременно, устанавливая их на микроконтроллер (один на другой). Спектр их применения:

  • при помощи официального устройства Arduino – Ethernet cnc shield можно добиться независимости проекта от ПК, да и для хостинга веб-сервера его используют;
  • 4 Relay Shield – возможность для того, чтобы подключать 4-х периферийные устройства;

  • Рrotoshield – весьма полезный шилд в момент, когда собирается схема;
  • LCD Shield позволяет информацию с Arduino выводить напрямую на периферийный экран;
  • еnergy Shield – расширенные возможности для питания на Arduino. Реальна подзарядка мобильников и гаджетов;
  • мotor shield обеспечивает управление большим числом моторов и их защиту;
  • SD Card Shield служит для обработки и хранения больших массивов информации;

  • Wi-fi Shield, подключенный к серийному порту, обеспечит дистанционное управление приводами роботизированных проектов;
  • GPRS Shield оснащается антеннами для использования сети GSM/GPRS;
  • E-Ink shield – путь для использования технологии электронных чернил, дисплею нужен для питания минимум энергии;
  • мusic Shield способен воспроизводить музыку через Arduino в отличном качестве.

Реально создать лазерный 3D принтер, ЧПУ станок, употребляя бюджетные платы Arduino. С платой расширения CNC Shield можно работать на станках с числовым программным управлением, в гравировальной или фрезерной машине. А шилд для управления тремя ШД (трехосевой станок) имеет три разъема, чтобы не было проблем с каждым драйвером при подключении.

Для любителей выжигать на различных материалах

В сети можно увидеть многочисленные самодельные модели выжигателей, которые способны создавать рисунок на фанере, пластике, металле и даже на стекле. Причем достигается фотографическая схожесть и некоторая объемность изображения. Поверхность очищают, обезжиривают, грунтуют белым акрилом марки Kudo и, применяя лазерный ЧПУ выжигатель, его ещё называют пиропринтер, создают уникальные изображения. Иногда процесс длится 6 и больше часов.

Скорость работы выжигателя – стабильная 10 м/мин, и у программистов есть идеи, как ее поднять, не вмешиваясь в работу блока управления. Управлять выжигателем можно и с ноутбука (ОС Windows XP и 7), отказавшись от LPT кабеля. Это превратит выжигание в увлекательное занятие для детей и подростков с применением возможностей лазерных фрезеров.