Двухполярное питание из однополярного для портатива на tps65133

Используемые в схеме детали

В качестве операционного усилителя можно использовать микросхемы К140УД6, К140УД7, К140УД601, К140УД701 или зарубежные аналоги (с учётом их другой цоколёвки).

Резисторы в эмиттерных цепях транзисторов нужны для выравнивания токов транзисторов и ограничения их бросков в моменты переключения. При небольших тока нагрузки достаточно будет использовать один выходной каскад, тогда эти резисторы в эмиттерных цепях можно исключить. При значительной нагрузке (до 10 А и выше) следует использовать параллельное включение транзисторов (показано на схеме зелёным цветом). Номинал этих резисторов может быть от 0,05 до 0,2 Ом при мощности не менее 5 ватт (зависит от мощности и тока нагрузки). Все остальные резисторы в схеме — типа МЛТ0,25.

Транзисторы можно использовать типов: КТ805/КТ837, КТ819/КТ818, КТ827/КТ825 или аналогичные импортные. Диоды VD1 и VD2 предназначены для исключения шунтирования транзисторами устройства цепей нагрузки. Они могут быть типа КД226, КД210, КД237 и другие, в зависимости от максимального тока нагрузки.

Транзисторы устанавливают на теплоотводы достаточного размера. Размеры теплоотводов определяются только тем, насколько нагрузка будет не сбалансирована. Чем больше не сбалансирована, тем больше площадь радиаторов.

Настройки этот делитель однополярного напряжения не требует, правильно собранная схема начинает работать сразу. Резистор Rрег предназначен для установки равенства выходных двухполярных напряжений.

В случае появления «биений» выходного напряжения в результате возбуждения и самогенерации, необходимо уменьшить значение резистора R4, увеличив при этом значение обратной отрицательной связи.

Микросхема ОУ может быть ограничена по питанию до 15 вольт в «плече» (в зависимости от её типа), поэтому для получения бОльших выходных напряжений необходимо подключать питание к выводам 4 и 7 через добавочные сопротивления и соответствующие стабилитроны, но при этом возрастёт и нижний уровень выходных напряжений. Стабилитроны следует зашунтировать конденсаторами порядка 0,1…1,0 мкФ.

В некоторых микросхемах ОУ предусмотрена возможность регулировки баланса нуля выходного напряжения с помощью внешнего подстроечного резистора. Но при изменении напряжения входного питания, будет необходима его подстройка, поэтому в данной схеме эта функция не используется.

Схема стабилизатора была собрана и испытана на практике. При всей своей простоте обеспечивает хорошие показатели и надёжность, не занимает много места и может быть размещена в корпусе вашего «исходного» однополярного БП. При этом для нормальной работы БП в однополярном режиме, следует предусмотреть переключатель S1 для отключения двуполярной приставки, чтобы она не оказывала никакого влияния на него. Также, на выходе основного БП полезно будет поставить дополнительный предохранитель F1 на ток, соответствующий максимально возможному току двуполярной нагрузки.

Конструкция устройства

Следует учесть, что выход GND приставки является «искусственной средней точкой», поэтому он не должен контактировать с «общим» проводом исходного БП (!) — обычно это «-» питания.

На фото приведён пример моей конструкции. Схема собрана на печатной плате размерами 55 х 30 мм и установлена в корпусе «основного» (однополярного) БП. Корпус от компьютерного блока питания имеет компактные размеры, поэтому монтаж получился довольно плотным. Однако на работу как основного блока, так и «приставки» это не оказало никакого влияния. Транзисторы выведены на проводах небольшой длины (порядка 60…80 мм) и закреплены на свободном месте основного теплоотвода через изоляционные прокладки. Переключатель S1 выведен на переднюю панель БП (тумблер). Предохранитель F1 установлен на боковой стенке справа. Автор статьи: Барышев Андрей Владимирович.

Форум по блокам питания

Схема цепей смещения в усилителях типа UBbIX = – kUBX – b

Последний, четвёртый случай ОУ с однополярным питанием и переходной характеристикой вида UBbIX = – kUBX – b имеет схему представленную на рисунке ниже

Схема усилителя с передаточной характеристикой вида UBbIX = – kUBX — b

Данная схема представляет собой инвертирующий сумматор и состоит из ОУ DA1, развязывающего конденсатора С1, резисторов R1, R2 и R3. С учётом элементов схемы передаточная характеристика будет иметь вид

Тогда коэффициенты k и b можно представить в следующем виде

Расчёт усилителя с переходной характеристикой вида UBbIX = – kUBX – b

Для примера рассчитаем усилитель реализующий переходную характеристику вида UBbIX = – kUBX — b. В качестве начальных условий примем следующие параметры схемы: диапазон входного напряжения UBX = -0,2 … -0,8 В, диапазон выходного напряжения UBЫX = 1 … 5 В, напряжение смещение берётся от напряжения питания UCM = UПИТ = 6 В.

  1. Рассчитаем коэффициенты k и b, для этого решим систему линейных уравнений

    Решив данную систему, получим k = – 6,67 и b = — 0,334. Тогда переходная характеристика будет иметь вид

  2. Определим величину сопротивления R1 и R3

    Примем R1 = 10 кОм, тогда R3 = 6,67 * 10 = 66,7 кОм. Примем R3 = 68 кОм.

  3. Определим величину сопротивления R2

    Примем R2 = 200 кОм.

Видео

Напряжение 220 вольт идет через лампу на выключатель, с выключателя на трансформатор. Далее на диодные мостики и конденсаторы. Также в корпусе было место, и я прикрутил розетку — для проверки тех же неизвестных трансформаторов или при наладке импульсных блоков питания. Патрон для лампочки прикрепил на верхнюю крышку корпуса, с помощью трубки с резьбой от люстры. Внутри блока питания просто ни как её не разместишь, поэтому пришлось сделать именно так. Итого получилась такая схема, подробнее можно рассмотреть на картинках. Простой блок питания с несколькими функциями, а самое главное занимает немного места на столе. Казалось бы — простая примитивная конструкция, но очень полезная тем, кто занимается изготовлением или ремонтом аудиоаппаратуры, а главное, экономит время и нервы.

Двухполярное питание из однополярного на микросхеме TPS65133

Главным достоинство этого преобразователя является то, что выходное напряжение составляет ±5В независимо от входного напряжения, которое может быть от 2.9 до 5 вольт (допустимо подавать до 6 вольт). Т.е. микросхема создана для непосредственного использования с 3.6 вольтовыми аккумуляторами. Но никто не запрещает запитать ее от usb или блока питания.

Частота преобразования тут 1.7МГц. Для аудио устройств это отличный вариант. При этом, для работы не требуется использование трансформаторов, которые нужны в большинстве SEPIC конвертеров. Для преобразования требуется только индуктивность которая, благодаря столь высокой частоте, достаточно мала.

Схема преобразователя однополярного напряжения в двухполярное на TPS65133 выглядит следующим образом:

Конденсаторы желательно устанавливать танталовые. Так же будет не лишним поставить дополнительно конденсаторы по 0.1 мкФ для фильтрации ВЧ-помех.

Что касается такого параметра как выходной ток, то тут все очень хорошо. Выходной ток может достигать 250 мА на плечо. Производитель заявляет, что при выходном токе от 50 до 200 мА КПД преобразователя превышает 90%, что является очень хорошим показателем для применения в портативной технике.

Питание операционных усилителей

Если выводы питания не указаны, то считается, что на ОУ идет двухполярное питание +E и -E Вольт. Его также помечают как +U и -U, VCC и VEE, Vc и VE. Чаще всего это +15 и -15 Вольт. Двухполярное питание также называют биполярным питанием. Как это понять – двухполярное питание?

Давайте представим себе батарейку

Думаю, все вы в курсе, что у батарейки есть “плюс” и есть “минус”. В этом случае “минус” батарейки принимают за ноль, и уже относительно нуля считают напряжение батарейки. В нашем случае напряжение батарейки равняется 1,5 Вольт.

А давайте возьмем еще одну такую батарейку и соединим их последовательно:

Итак, общее напряжение у нас будет 3 Вольта, если брать за ноль минус первой батарейки.

А что если взять на ноль минус второй батарейки и относительно него уже замерять все напряжения?

Вот здесь мы как раз и получили двухполярное питание.

Чем больше мощность, тем хуже…

Часто радиолюбители стараются сделать свой усилитель как можно мощнее (типа, так круче), да и аудиофилы зачастую оснащают свои системы усилителями с мощностью в разы превышающей необходимую для озвучивания обычной комнаты до нормального уровня громкости, мотивируя тем, что так получается больший динамический диапазон. Такие усилители (большой мощности) порой решают одни проблемы, но создают другие.

Индуктивность проводников питания является основным «слабым звеном» усилителей мощности класса АВ. В таких усилителях выходные транзисторы включаются и выключаются поочередно, соответственно по плюсовой и минусовой шинам питания протекают полуволны зарядных токов.

Если эти импульсы через емкостные и индуктивные связи попадут в звуковой тракт это приводит к ужасному размытому звучанию.

Такое происходит, если какая-то чувствительная дорожка (проводник) проходит рядом с шиной питания. Бифилярная свивка проводов питания эффективно подавляет излучаемые помехи за счёт взаимной компенсации положительной и отрицательной полуволн.

На печатной плате этот метод можно реализовать, если шины питания расположить друг над другом с двухсторон платы (требуется двухсторонняяя печатная плата)

Достойный образец проектирования печатной платы для усилителя мощности — это конструкция Ultra-LD 200W, представленная в одном из номеров журнала «Практическая электроника каждый день». На печатной плате этого усилителя реализованы все рекомендации по монтажу, представленные в данном цикле статей. И во многом за счёт этого удалось получить уровень шумов -122 дБ и уровень нелинейных искажений ниже 0,001%.

Заземление одной стороны печатной платы хорошо работает в высокочастотных и слаботочных конструкциях. Для усилителей мощности это не подходит, потому как трудно предсказать протекание токов в зависимости от выбора точек заземления.

В современных ламповых усилителях часто общую шину делают в виде отрезка тостого лужёного провода. Многие гуру проповедуют разводку звездой с единственной точкой подключения. Бывают случаи, когда при таком подходе усилители плохо работают. Сказывает большое количество длинных проводов, которые снижают стабильность конструкции.

Как правило, в хорошем усилителе есть несколько точек заземления.

Подача опорного напряжения на ОУ, ИУ и АЦП

На рис. 7 приведена схема с однополярным питанием, в которой напряжение на несимметричный вход аналого-цифрового преобразователя (АЦП) подается с инструментального усилителя. Опорное напряжение усилителя обеспечивает напряжение смещения, соответствующее нулевому дифференциальному входному напряжению, а опорное напряжение АЦП обеспечивает коэффициент масштабирования. Для снижения внеполосного шума между выходом ИУ и входом АЦП часто применяется простой сглаживающий RC-фильтр нижних частот. Разработчики часто соблазняются простыми решениями — например, для подачи опорного напряжения на ИУ и АЦП применяют резистивные делители вместо низкоомного источника. Для некоторых ИУ это может послужить причиной появления погрешности.

Рис. 7. Типичная схема подачи сигнала с ИУ на АЦП с однополярным питанием

Уважаемый Пользователь!

Собираем простой двухполярный лабораторный блок питания для лаборатории начинающего радиолюбителя. Доброго дня уважаемые радиолюбители! На этом занятии Школы начинающего радиолюбителя мы начнем создавать лабораторию радиолюбителя. Для более-менее качественного исполнения задуманной конструкции радиолюбителю необходим минимальный набор приборов для настройки и проверки работоспособности собираемой им схемы. Кроме мультиметра тестера необходимо иметь: лабораторный блок питания для проверки работоспособности и настройки схемы, и чтобы для каждой схемы, прежде чем наладить ее, не собирать отдельный источник питания ; генератор импульсов прямоугольных, пилообразных, синусоидальных — для настройки схемы ; частотомер для измерения частотных характеристик собираемой схемы или ее настройки. Это основные приборы. Начнем мы с лабораторного блока питания.

Двуполярный стабилизатор напряжения на основе однополярной микросхемы DA1 с напряжением стабилизации 5 В выполнен по схеме рис. 12 в .

Обратный ток акустической системы

Как известно, акустическая система является реактивной нагрузкой. А значит, она может возвращать ток усилителю. Этот ток, протекая по проводникам, создаёт разность потенциалов, что может привести к появлению положительной обратной связи и как следствие нестабильности усилителя.

Для избежания этого, земляную клемму громкоговорителя следует подключать к общему выводу конденсаторов фильтра питания. Часто вывод громкоговорителя подключают к общему выводу микросхемы, как показано на рисунке:

Такое подключение замыкает отрицательную полуволну сигнала в локальном контуре, исключая фильтрующий конденсатор, который мог бы снизить излучаемые помехи и повысить стабильность системы.

На рисунке показано, как ток утечки на землю одной полуволны сигнала может навести неприятные помехи и искажения, если общий провод громкоговорителя подключен к выводу выходного каскада микросхемы:

Аналогично, если на плате усилителя в цепях питания есть байпасные конденсаторы (а они обычно есть) довольно большой ёмкости в несколько сотен микрофарад, то импульсы зарядного тока также создадут на общем проводнике разность потенциалов. Поэтому, повторимся ещё раз, наилучшая точка подключения общего провода акустической системы — это общий вывод конденсаторов фильтра питания.

Чем больше мощность, тем хуже.

Часто радиолюбители стараются сделать свой усилитель как можно мощнее (типа, так круче), да и аудиофилы зачастую оснащают свои системы усилителями с мощностью в разы превышающей необходимую для озвучивания обычной комнаты до нормального уровня громкости, мотивируя тем, что так получается больший динамический диапазон. Такие усилители (большой мощности) порой решают одни проблемы, но создают другие.

Индуктивность проводников питания является основным «слабым звеном» усилителей мощности класса АВ. В таких усилителях выходные транзисторы включаются и выключаются поочередно, соответственно по плюсовой и минусовой шинам питания протекают полуволны зарядных токов.

Если эти импульсы через емкостные и индуктивные связи попадут в звуковой тракт это приводит к ужасному размытому звучанию.

Такое происходит, если какая-то чувствительная дорожка (проводник) проходит рядом с шиной питания. Бифилярная свивка проводов питания эффективно подавляет излучаемые помехи за счёт взаимной компенсации положительной и отрицательной полуволн.

На печатной плате этот метод можно реализовать, если шины питания расположить друг над другом с двухсторон платы (требуется двухсторонняяя печатная плата)

Электроника, электротехника. Профессионально-любительские решения.

Для работы многих схем с использованием операционных усилителей часто требуется двухполярное питание, или однополярное со средней точкой, что почти одно и то же. Источники двухполярного питания распространены гораздо меньше, чем однополярные. Для питания схем с незначительным потреблением (порядка нескольких миллиампер) можно использовать однополярный источник с созданием средней точки с помощью простого резистивного делителя и фильтрующих конденсаторов, рисунок 1.

Рисунок 7. 3D-модель устройства. Рисунок 8. Внешний вид делителя питания.
Рисунок 1. Создание средней точки резистивным делителем.

Такой вариант создания двуполярного питания из однополярного характеризуется ощутимыми потерями в схеме и низкой стабильностью, поскольку при неравномерной нагрузке плеч, бОльшая нагрузка будет подтягивать среднюю точку к своему плечу. Подобные схемы могут пригодиться при опытах с операционными усилителями. В схеме варианта б) подстроечным резистором R3 можно корректировать уровень напряжения средней точки. Имеет смысл использовать для быстрой сборки тестовых схем и только в том случае, если напряжение выхода однополярного источника будет достаточным, для создания двухполярного питания.

Рисунок 2. Формирование средней точки с помощью операционного усилителя.

Более адаптивную схему к малой, но динамичной нагрузке можно собрать с применением операционного усилителя. Схема получается довольно простой, рисунок 2.

Потенциометром R1 задаётся уровень напряжения средней точки. Это напряжение подаётся на не инвертирующий вход «3». При включении питания схемы конденсаторы C1 и C2 заряжаются приблизительно равномерно, в точке их соединения возникает напряжение, приближённо равное половине напряжения питания относительно нижней шинки питания (0 слева, -Uп/2 справа по схеме). Так формируется средняя точка источника питания («корпус», «земля»). Напряжение средней точки через резистор R2 подаётся на «следящий» инвертирующий вход усилителя «2».

Если напряжение средней точки подаваемое на инвертирующий вход превышает заданное напряжение на не инвертирующем входе, усилитель будет тянуть напряжение выхода «6» к минусовой шинке питания, открывая транзистор VT2 до тех пор, пока напряжение средней точки не поравняется с заданным.

Когда напряжение средней точки проседает к минусу питания, то усилитель наоборот подтягивает выход «6» к плюсу питания, открывая транзистор VT1, который будет поднимать напряжение средней точки до тех пор, пока оно не поравняется с заданным.

Схема цепей смещения в усилителях типа UBbIX = kUBX – b

Схема усилителя передаточная характеристика, которого имеет вид UBbIX = kUBX – b представлена ниже


Схема усилителя с передаточной характеристикой типа UBbIX = kUBX – b

Передаточная характеристика данной схемы представлена следующим выражением

В данном случае коэффициенты k и b будут определяться следующими выражениями

Расчёт усилителя с характеристикой типа UBbIX = kUBX — b

Для примера рассчитаем усилитель со следующими параметрами: входное напряжение UBX = 0,3…0,7 В, выходное напряжение UBЫX = 1…5 В, напряжение питания UПИТ = 6 В, в качестве источника смещения используется напряжение питания UCM = UПИТ = 6 В.

  1. Рассчитаем коэффициенты передаточной характеристики

    Решив данную систему уравнений, получим k = 10 и b = -2.

    Тогда переходная характеристика данного усилителя будет иметь вид

  2. Рассчитаем сопротивление резисторов R3 и R В данной схеме сопротивление резистора R3 должно быть значительно больше эквивалентного сопротивления параллельных резисторов R1 || R2. Поэтому коэффициент k можно выразить следующим приближённым выражением

    Примем сопротивление резистора R3 = 10 кОм, тогда R4 = 90 кОм.

  3. Рассчитаем сопротивление резисторов и R

    Так как R3 >> R1 || R2 примем R2 = 0,75 кОм, тогда R1 = 26*0,75=19,5 кОм. Примет R1 = 20 кОм.

    Таким образом, передаточная характеристика усилителя будет иметь вид UBbIX = 10UBX — 2 при следующих номиналах элементов: R1 = 20 кОм, R2 = 0,75 кОм, R3 = 10 кОм, R4 = 90 кОм.

Работа ОУ от однополярного источника питания

В обычных условиях схема включения ОУ предусматривает двухполярное питание, однако в современной портативной аппаратуре с батарейным питанием это представляется не совсем удобным. Вследствие этого применяют схемы однополярного питания ОУ с введение в схему цепи дополнительного смещения.

В линейном усилителе соотношение между входным UBX и выходным UBbIX напряжением имеет следующую функциональную зависимость, которая представляет собой уравнение прямой и называется передаточной характеристикой

где k – крутизна усилителя

b – смещение выходного напряжения.

Поэтому, в зависимости от коэффициентов k и b, возможно четыре варианта передаточных характеристик линейного усилителя

Для нахождения коэффициентов k и b в уравнении прямой линии необходимо задаться параметрами двух точек на этой прямой, в случае линейного усилителя – параметрами входного и выходного напряжения в двух точках, чаще всего крайних.

В качестве примера найдём коэффициенты k и b в следующем случае: на входе линейного усилителя сигнал от датчика может изменяться в пределах от 0,3 до 0,7 В, а с выхода усилителя на аналого-цифровой преобразователь должен поступать сигнал в диапазоне от 1 до 6 В. Для определения уравнения линейного усилителя мы имеем две точки А1(UBbIX1; UBX1) = (1; 0,3) и А2(6; 0,7), поэтому составим систему уравнений

Решив данную систему, получим следующие значения коэффициентов k = 7 и b = 1,1. В итоге передаточная характеристика линейного усилителя будет иметь следующий вид

Для каждого вида передаточной характеристики существует своя схема реализации цепей смещения, рассмотрим их подробнее.

Схемотехника

Корпус использовал от нерабочего блока питания компьютера. На штатном месте остался выключатель и разъём для сетевого шнура. Трансформатор у меня такой. Информацию про него в интернете не нашёл, и поэтому сам искал первичную, вторичную обмотку.

В моём случае выяснилось что он имеет 4 обмотки по 10 вольт. Соединил обмотки последовательно — получилось 2 по 20 вольт или 1 на 40 вольт. Диодных мостов у меня два: один на +/-28 вольт и второй +/-14, сделал для проверки схем на операцинниках (фнч, темброблоки и прочие).

Для проверки стабилитронов была выбрана самая простая хорошо рабочая схемка, которая есть на другом сайте. Изменил только номиналы резисторов R1 и R2: R1 — 15k, R2 — 10k. И соответственно питается она у меня от 56 вольт. Разместил на небольшой кусочек текстолита. Платку изготовил путем прорезания дорожек. Кнопку взял советскую, так как её проще прикрепить к передней панели. Контакты для подсоединения стабилитронов вывел на переднюю панель. Вольтметр не стал размещать на панели, вывел 2 клеммы для подсоединения мультиметра. Диодные мосты с конденсаторами разместил также на кусочках текстолита: можно было конечно разместить на одну плату, просто было несколько «обрезков», вот на них и разместил. Выходы питания, для подсоединения тестируемых устройств, реализовал на зажимах для проводки. В общем получилась такая схематика.

Новая схема БП

При изготовлении был применён валяющийся без дела трансформатор мощностью 60 ватт, с двумя вторичными обмотками по 28 вольт переменного напряжения и одной на 12 вольт (для питания дополнительных маломощных полезных устройств, например — кулера охлаждения радиаторов мощных транзисторов со схемой управления). Получившаяся схема приведена на рисунке.

Чтобы иметь возможность регулировать выходной ток в широких пределах, вместо резисторов R6 и R8 в обоих плечах были применены наборы сопротивлений R6 — R9 и сдвоенный галетный переключатель на 5 положений. При этом резистор R6 определяет величину минимального тока ограничения, поэтому он включен в выходную цепь постоянно. Остальные же резисторы при помощи переключателя S1 подключаются параллельно этому R6, суммарное сопротивление уменьшается и выходной ток, соответственно, увеличивается.

Резисторы R6 и R7  могут быть мощностью 0,5 ватт или более R8 — 1-2 ватта, а R9 — не менее 2 ватт (у меня стоят резисторы типа С5-16МВ-2ВТ и заметного их нагрева при нагрузке до 3 ампер не наблюдается). На схеме (рис.1) указаны значения выходных токов, при которых срабатывает защита и выходной ток даже при КЗ не превышает этих значений.

Транзисторы Т1 (обозначение дано по исходной схеме, у меня это А1658 и КТ805) стоят без теплоотводов и практически вообще не нагреваются. Вместо А1658 можно поставить КТ837, например. Вообще, при сборке схемы мною пробовались самые разные транзисторы, соответствующие по структуре и мощности и всё работало без проблем. Переменный резистор R (сдвоенный, для синхронной регулировки выходного напряжения) применён советский, сопротивлением 4,7 кОм, хотя пробовались и сопротивления до 33 кОм, всё работало нормально. Разброс выходных напряжений по плечам составляет порядка 0,5-0,9 вольт, чего для моих целей, например, вполне достаточно. Хорошо бы, конечно, поставить сдвоенный переменник с меньшим разбросом сопротивлений, но таких пока нет под рукой…

Стабилитроны VD1 — составные, по два соединённых последовательно Д814Д (14 + 14 = 28 вольт стабилизации). Следовательно, пределы регулировки выходных напряжений получились от 0 до 24 вольт. Диоды выпрямительных мостов — любые, соответствующей мощности, я использовал импортные диодные сборки — KBU 808 без радиатора (ток до 8 А) и ещё одну маломощную, без обозначения (?), для питания кулера. 

На теплоотводы установлены только выходные регулирующие транзисторы КТ818, 819. Теплоотводы небольшие, что определено габаритами корпуса (по размеру он как БП от компа), поэтому потребовалось сделать дополнительное принудительное их охлаждение. Для этих целей был использован небольшой кулер (от системы обдува процессора старого компьютера) и простая схема управления, всё это питается от отдельной обмотки трансформатора, которая там оказалась весьма кстати.

В качестве термодатчика был использован германиевый транзистор типа МП42 (большие залежи остались и девать некуда. Оказалось, что замечательно работают в качестве термодатчиков!) Схема простая и понятная, в особом описании не нуждается. База транзистора-термодатчика никуда не подключается, этот вывод можно просто откусить, желательно только не своими зубами, а то стоматология нынче дорогое удовольствие!

Корпус этого транзистора металлический, поэтому его необходимо изолировать, например, трубкой-термоусадкой и расположить как можно ближе к теплоотводам выходных транзисторов. Температуру, при которой запускается кулер, можно регулировать подстроечным резистором (сопротивление может быть от 50 до 250 кОм). Максимальный ток и скорость вращения вентилятора определяются гасящим резистором в цепи питания. У меня это сопротивление 100 Ом (подбирается экспериментально, в зависимости от напряжения питания и тока потребления кулера).

Блок питания, собранный по данной схеме, неоднократно был испытан с нагрузкой во всём диапазоне выходных напряжений и токах от 30 мА до 3,5 ампер и показал свою полную работоспособность и надёжность работы. При токах более 2 ампер применённый трансформатор грелся довольно сильно из-за недостаточной его мощности, в остальном же схема вела себя вполне адекватно.

Есть возможность увеличить выходной ток нагрузки более 3-4 ампер, если использовать соответствующей мощности трансформатор и выходные (регулирующие) транзисторы, возможно применить параллельное включение нескольких мощных транзисторов. Схема не требует особой наладки и подбора компонентов, при изготовлении можно использовать практически любые транзисторы с коэффициентом усиления 80-350. Специально для сайта Радиосхемы, автор — Андрей Барышев

Схема цепей смещения в усилителях типа UBbIX = – kUBX + b

Третий случай питания ОУ от однополярного источника имеет передаточную характеристику вида UBbIX = – kUBX + b. Схемное решение для данного случая представлено ниже

Схема усилителя с передаточной характеристикой вида UBbIX = – kUBX + b.

Данная схема состоит из ОУ DA1, развязывающих конденсаторов C1 и C2, резисторов R1, R2, R3, R4 и представляет собой дифференциальный или разностный усилитель.

С учётом элементов схемы можно передаточная характеристика будет иметь вид

Тогда коэффициенты k и b можно представить следующими выражениями

Расчёт усилителя с характеристикой вида UBbIX = – kUBX + b

В качестве примера рассчитаем усилитель, который должен иметь следующие параметры: диапазон входного напряжения UBX = -0,1 … -1 В, диапазон выходного напряжения UBЫX = 1 … 5 В, напряжение смещение берётся от напряжения питания UCM = UПИТ = 6 В.

  1. Определим коэффициенты передаточной характеристики k и b, для этого составим и решим систему линейных уравнений

    Решив данную систему, получаем k = — 4,44 и b = 0,556, тогда переходная характеристика данной схемы усилителя будет иметь вид

  2. Определим сопротивление резисторов R1 и R4

    Примем R1 = 10 кОм, тогда R4 = 4,44 * 10 = 44,4 кОм. Примем R4 = 43 кОм

  3. Рассчитаем сопротивление резисторов и R3

    Примем R3 = 1кОм, тогда R2 = 56,19 * 1 = 56,19 кОм. Примем R2 = 56 кОм.