Геометрия

Египетский треугольник

Организация: МБОУ «Кудеихинская СОШ»

Населенный пункт: Чувашия,Порецкий район, с. Кудеиха

«Египетский треугольник» — небольшая тема в курсе геометрии 8 класса

Очень важно, чтобы материал, с которым учащиеся познакомятся на этом уроке, вызвал у них желание учиться

Урок начинается с практической работы: несколько учеников на доске (а остальные в тетрадях) строят треугольник по трём сторонам, если стороны равны: а) 3, 4, 5; б) 6,8,10; в) 5,12,13 (при этом не обязательно указывать единицы измерения). Затем ребята получают задание – измерить больший угол этих треугольников. Ответы оказываются близки к 90°. Тогда учитель говорит: «Посмотрите, ребята! Треугольники у всех расположены по-разному, длины сторон разные, а результаты у всех получились примерно одинаковыми. Чем объясняются небольшие различия в данных? Тем ли, что здесь нет никакой закономерности, или тем, что закономерность есть, но нашими инструментами мы не можем установить её с достаточной точностью?» Учащиеся склоняются к тому, что если все углы получились близкими к прямым, то, значит, какая-то закономерность существует. «Как же мы сформулируем утверждение, которое будем доказывать?» — спрашивает учитель. Класс постепенно находит нужную формулировку.

«Если треугольник имеет стороны а, в, с и а² + в² = с², то угол, противолежащей стороне с прямой». Это доказательство разбирается в учебнике А.В.Погорелова, задача №17. Далее разбирается теорема Пифагора.

Затем предлагается устная работа: не выполняя предложенных заданий, определить, когда необходимо воспользоваться теоремой Пифагора, а когда – обратной к ней.

Задания

  1. В прямоугольном треугольнике гипотенуза и катет соответственно 13 и 5. Найдите второй катет.
  2. В прямоугольном треугольнике катеты равны 1,5 и Найдите гипотенузу.
  3. Определите вид треугольника, стороны которого равны 6, 8 и 10.

Далее учащиеся выполняют практическую работу: на тонкой верёвке делаются метки, делящие её на 12 равных частей, связывают концы, а затем растягивают верёвку в виде треугольника со сторонами 3,4 и 5. тогда угол между сторонами 3 и 4 оказывается прямым. Делается вывод: если стороны треугольника пропорциональны числам 3.4 и 5, то этот треугольник прямоугольный.

Этот факт использовался египтянами для построения на местности прямых углов.

3² + 4² = 5², говоря иначе, числа 3,4 и 5 корни уравнения х² + у² = z². Поэтому треугольник со сторонами 3,4 и 5 единиц называют египетским.

Сразу же возникает вопрос: нет ли у этого уравнения целочисленных решений? Прямоугольными являются также треугольники со сторонами 5,12,13; 8,15,17; 7,24,25, что соответствует теореме, обратной к теореме Пифагора: 13² = 5² + 12²; 17² = 15² + 8²;

25² = 24² + 7².

Прямоугольные треугольники, у которых длины сторон выражаются целыми числами, называются пифагоровыми треугольниками. В конце урока уместно прочитать наиболее известные стихи, посвящённые тереме Пифагора.

Теорема Пифагора

Если дан нам треугольник,

И притом с прямым углом,

То квадрат гипотенузы

Мы всегда легко найдём;

Катеты в квадрат возводим,

Сумму степеней находим –

И таким простым путём

К результату мы придём.И.Дырченко

Литература.

  1. Шустер Ф.М.Материал для внеклассной работы по математике ( Минск: Народная света. 1984)
  2. Крамор В.С. Повторяем и систематизируем школьный курс алгебры и начал анализа.- М.: Просвещение, 1996.
  3. Погорелов А.В. Геометрия. 7-9 классы –М.: Просвещение, 2013.

Приложения:

  1. file0.docx.. 16,2 КБ

Опубликовано: 22.10.2020

Задачи малки-угломера

Назначение малки в основном для измерения угла любой поверхности или детали. Часто прибор применяется при установке подоконников, им легко измерить углы откосов и перенести данные на заготовку, которую нужно отрезать.

Это значительно облегчает установку подоконника, упрощает процесс монтажа. Малка позволяет вычислить угол рассвета при работе с откосами окон.

Применяется прибор и в столярном деле, позволяя точно выверять углы наклона различных элементов.

От слесарного угольника малка-угломер отличается наличием подвижной части, позволяющей работать с углами от 0 до 180 градусов. Колодка выступает основой инструмента, тогда как у угольника нижняя часть неподвижна, и он позволяет лишь проверить, составляет угол 90 градусов или нет.

Колодка малки оснащена прорезью, в которую может опускаться перо, являющееся подвижной частью прибора. Это позволяет замерять углы и хранить инструмент в сложенном виде. Он достаточно компактен, не имеет риска сломаться при перевозке.

В качестве крепежа применяют барашек или простую гайку, она же фиксирует угол после измерения. Благодаря этому малка не сбивается, с ее помощью можно расчерчивать деталь, наносить метки, как линейкой, снимать лишнюю штукатурку, пока последняя не затвердела.

Разметка под фундамент своими руками

Качество постройки в огромной степени зависит от того, насколько правильно была выполнена разметка под фундамент

Занимаясь этой работой важно с максимальной точностью выдержать все прямые углы. Разметка фундамента своими руками под частный дом может быть выполнена несколькими способами. Чаще всего используются метод «египетского» треугольника и метод двух кривых

Поэтому в этой статье рассмотрим именно их

Чаще всего используются метод «египетского» треугольника и метод двух кривых. Поэтому в этой статье рассмотрим именно их.

Какие инструменты понадобятся?

Производится разметка фундамента своими руками с применением инструментов:

  • Рулетки;
  • Шнура;
  • Гидроуровня и отвеса;
  • Помимо этого понадобятся деревянные колышки.

С чего начать разметку?

Итак, как провести разметку фундамента? Для начала следует определить две исходные точки, вбив колышки по углам будущего здания, находящимся на одной прямой со стороны его самой длинной стены. Далее от них нужно будет провести перпендикуляры, таким образом отметив внешний контур смежных стен.

«Египетский треугольник». Самый простой метод

Разметка фундамента своими руками быстрее всего может быть произведена методом «золотого» треугольника, имеющего соотношение длин сторон 5*3*4. Мероприятие при этом выполняется в несколько этапов:

1. Для начала нужно найти длинную веревку и завязать на ней четыре узла. Первый – на конце, второй на расстоянии 3м, третий в четырех метрах от второго и последний в пяти метрах от третьего; 2. После этого самый первый и самый последний узлы соединяют гвоздем. По гвоздю следует вбить и в каждый из промежуточных узлов; 3. При этом длинную сторону получившегося треугольника нужно расположить вдоль линии между двумя уже вбитыми колышками; 4. Вдоль короткой стороны проводят требуемый перпендикуляр; 5. На полученной прямой, вбивают третий колышек на расстоянии равном ширине здания.

Важно: Правильность всех замеров следует обязательно проверить. Для этого между вбитыми кольями по диагоналям натягивают два шнура и связывают в месте пересечения

Paste a VALID AdSense code in Ads Elite Plugin options before activating it.

Метод двух дуг

Разметка фундамента своими силами этим методом выполняется также с использованием веревки. Предварительно от одного из колышков в обе стороны по уже имеющейся прямой отмеряют равные расстояния и отмечают найденные места. Далее к одной из полученных точек прикрепляют веревку с привязанным на противоположном конце гвоздем. Натянув ее проводят дугу напротив того колышка, от которого отмерялись расстояния. Затем веревку крепят ко второму отмеченному месту и чертят еще одну дугу. Из той точки, где дуги пересекутся, проводят линию к колышку. В результате получается прямой угол между ней и уже имеющейся линией.

На заключительном этапе к кольям на высоте будущего фундамента привязывают шнур, поверяя горизонтальность его положения со всех четырех сторон, пользуясь строительным уровнем. Для ленточного фундамента чертят внутренний контур параллельно найденному внешнему и также натягивают шнур.

Совет: В том случае, если траншею предполагается копать с привлечением техники, шнуры лучше не использовать. В процессе работы они могут порваться. Линии между найденными точками в этом случае стоит прочертить песком. Для нахождения центров столбов столбчатого фундамента, от найденных углов вдоль прочерченных линий отмеряют необходимые расстояния и ставят отметки. Далее проверяют прямоугольность углов, получившихся на пересечении линий (соединяющей полученные точки на противоположных сторонах и линии периметра, на которой расположены отметки).

Разметка фундамента своими руками, как можно было заметить – процедура не такая уж и сложная. Самое главное, делать все аккуратно, хорошо натягивать веревку и обязательно проверять полученный результат методом диагоналей.

Другие способы доказательства теоремы

Зафиксировано более 400 доказательств теоремы Пифагора. Это связано с простотой ее формулировки, популярностью и широким применением в геометрии. К числу распространенных доказательств относятся методы площадей и бесконечно малых.

Методом площадей

Первоначально требуется дополнительное построение – рисуется квадрат, каждая из сторон которого равна сумме длин катетов a и b. Отложив эти длины, проведем гипотенузы у прямоугольных треугольников:

Очевидно, что внутренний четырехугольник, образованный четырьмя гипотенузами, будет квадратом, так как все его стороны равны, а углы прямые. Последнее следует из того, что сумма двух углов треугольника, построенных на гипотенузе равна 90º. Вычитая это значение из развернутого угла в 180º получаем как раз прямой угол.

Площадь внешнего квадрата включает в себя:

  • сумму площадей четырех прямоугольных треугольников;
  • площадь внутреннего квадрата.

Изменив расположение отрезков на сторонах квадрата и проведя новое построение, можно получить два внутренних квадрата и два прямоугольника. При этом, прямоугольники всегда будут равны, а квадраты будут равными только в частном случае – при равенстве сторон a и b.

Значит:

4ab2=2ab ⇒ c2=a2+b2, что и нужно было доказать.

Методом бесконечных малых

Данное доказательство делается с помощью интегрального исчисления. Рассматривается ситуация для бесконечно малых приращений сторон треугольника, составляется дифференциальное уравнение и находится его производная.

В начале вводится величина d. На это значение увеличивается катет а и гипотенуза с, а катет b остается неизменным. Отсюда имеем

da/ca = c/a, b = const

Разделяя переменные составляется дифференциальное уравнение:

c x dc = a x da

Для его решения необходимо проинтегрировать обе части, при этом получается соотношение:

c2 = a2 + const

определяя из начальных условий константу интегрирования, получим:

a = 0 ⇒ c2 = b2 = const

Таким образом мы определяем, что

c2 = a2 + b2

Теорема доказана!

Проклятие фараонов

В фильмах про приключения Индиана Джонса и Лары Крофт гробницы оснащены ловушками. На самом же деле это миф — египтяне действительно пытались защитить места упокоения фараонов при помощи сооружений, но их невозможно назвать ловушками. Во время изучения пирамиды Хеопса в 2016 году, археологи обнаружили простейший механизм защиты внутренних комнат. Они представляли собой обыкновенные баррикады из каменных блоков и попросту мешали мародерам добраться до погребальной камеры, где лежало не только тело фараона, но и различные драгоценности. Так что все это — миф.

Внутри пирамид не существует ловушек

Также во многих фильмах рассказывается про проклятия фараонов. А вот это уже чуть ближе к правде, но только отчасти. Да, в 1922 году археологи действительно вскрыли гробницу Тутанхамона и обнаружили надпись о том, что «нарушивших покой фараона ждет наказание». В течение нескольких последующих месяцев почти вся исследовательская группа погибла и люди люди чуть ли не полностью были убеждены в существовании проклятия. Только вот есть одно но — многие из умерших археологов были старше 70 лет и не были защищены от болезнетворных микробов и грибков, которые наверняка обитали в древней пирамиде

Так что, их смерть можно объяснить не только загадочным проклятием и виной тому может быть банальная неосторожность

Кадр из фильма «Мумия»

История открытия

Своим названием египетский треугольник обязан эллинам, которые часто посещали Египет в VII-V веках до н. э., среди них был и Пифагор. Основой пирамиды Хеопса является прямоугольный многоугольник, а пирамиды Хефрена — так называемый египетский треугольник, который древние называли священным. Плутарх писал, что жители Египта соотносили природу с этой геометрической фигурой: вертикальный катет символизировал мужчину, основание — женщину, а гипотенуза — ребенка. Соотношение сторон в нем равно 3:4:5, а это приводит к теореме Пифагора, так как 3 2 х 4 2 = 5 2 . Следовательно, тот факт, что в основании пирамиды Хефрена лежит египетский треугольник, позволяет утверждать, что знаменитая теорема была известна жителям древнего мира еще до того, как ее сформулировал Пифагор. Особенностью этой фигуры также считается то, что благодаря такому соотношению сторон она является первым и простейшим из Героновых треугольников, поскольку ее стороны и площадь целочисленные.

Математика приходит на протяжении всей своей истории, претерпевая изменения. Долгое время основная проблема таких достижений, будь то практических или теоретических, была сосредоточена на их применении, чтобы способствовать прогрессу в познании человечества.

Со временем озабоченность в связи с необходимостью распространения этих знаний, дающих каждому возможность их соотнести, также начинает беспокоиться о том, как их учат в школе. То есть с процессами, принятыми учителями, которые гарантируют право каждого на знание.

Сегодня, когда школьная математика в основном рассматривается формально и абстрактно, первостепенное значение имеет тот факт, что учитель начинает размышлять над тем, какая методология или методология может быть более уместна для определенного содержания. Это в перспективе не просто передать весь контент, а скорее научиться этому.

Египетский треугольник в строительстве

Свойства этой уникальной геометрической конструкции заключаются в том, что её построение без применения каких-либо инструментов позволяет построить дом с правильными во всех соотношениях углами.

Важно! Конечно, в идеале лучшим вариантом будет использование транспортира или угольника. Итак, качества египетского треугольника позволяют делать правильные во всех соотношениях углы. Стороны конструкции имеют следующее соотношение друг к другу:

Стороны конструкции имеют следующее соотношение друг к другу:

Итак, качества египетского треугольника позволяют делать правильные во всех соотношениях углы. Стороны конструкции имеют следующее соотношение друг к другу:

  1. 5,
  2. 4,

Чтобы проверить ту ли фигуру вы начертили, используйте хорошо известную ещё со школьной скамьи Теорему Пифагора.

Внимание! Свойства египетского треугольника таковы, что квадрат гипотенузы равен квадратам двух катетов. Для лучшего понимания возьмём приведенную выше зависимость и составим небольшой пример. Умножим пять на пять

В результате чего получим гипотенузу равную 25. Вычислим квадраты двух катетов. Они составят 16 и 9. Соответственно их сумма будет двадцать пять

Умножим пять на пять. В результате чего получим гипотенузу равную 25. Вычислим квадраты двух катетов. Они составят 16 и 9. Соответственно их сумма будет двадцать пять

Для лучшего понимания возьмём приведенную выше зависимость и составим небольшой пример. Умножим пять на пять. В результате чего получим гипотенузу равную 25. Вычислим квадраты двух катетов. Они составят 16 и 9. Соответственно их сумма будет двадцать пять.

Именно поэтому свойства египетского треугольника так часто используются в строительстве. Вам достаточно взять заготовку и прочертить прямую линию. Её длина всегда должна быть кратной 5. Затем нужно наметить один край и отмерять от него линию кратную 4, а от второго 3.

Внимание! Длина каждого отрезка составит 4 и 3 см (при минимальных значениях). Пересечение этих прямых образует прямой угол, равняющийся 90 градусам

Альтернативные способы построить прямой угол на 90 градусов

Как уже упоминалось выше, наилучшим вариантом будет просто взять угольник или транспортир. Эти инструменты позволяют с наименьшими затратами времени и сил добиться нужных пропорций. Главное же свойство египетского треугольника заключается в его универсальности. Фигуру можно построить, не имея в арсенале практически ничего.

Сильно в построении прямого угла помогают простые печатные издания. Возьмите любой журнал или книгу. Дело в том, что в них соотношение сторон всегда составляет ровно 90 градусов. Типографические станки работают очень точно. В противном случае рулон, который заправляется в станок, будет резаться непропорциональными кривыми углами.

Как получить египетский треугольник при помощи верёвки

Свойства этой геометрической фигуры тяжело переоценить. Неудивительно, что инженерами древности было придумано множество способов её образования с использованием минимальных ресурсов.

Одним из самых простых считается метод образования египетского треугольника со всеми его вытекающими свойствами посредством простой верёвки. Возьмите бечёвку и разрежьте её на 12 абсолютно ровных частей. Из них сложите фигуру с пропорциями 3, 4 и 5.

Как построить угол в 45, 30 и 60 градусов

Безусловно, египетский треугольник и его свойства очень полезны при постройке дома. Но без других углов вам обойтись всё-таки не удастся. Чтобы получить угол, равняющийся 45 градусам, возьмите материал рамки или багета. После чего распилите его под углом в сорок пять градусов и состыкуйте половинки друг с другом.

Важно! Для получения нужного наклона вырвите лист бумаги из журнала и согните его. При этом линии изгиба будут проходить через угол. Края должны совпасть

Края должны совпасть.

Как видите, свойства фигуры позволяют гораздо проще и быстрее построить геометрический конструкт. Чтобы добиться соотношения сторон в 60 градусов нужно взять один треугольник на 30º и второй такой же. Обычно подобные пропорции необходимы при создании определённых декоративных элементов.

Внимание! Соотношение сторон на 30º нужно, чтобы сделать шестиугольники. Их свойства востребованы в столярных заготовках

Крушение в 1905

Трагическое и вызвавшее неоднозначную реакцию в народе событие произошло морозным январским днем 1905-го года. 20 января египетский мост в Петербурге рухнул, не выдержав нагрузки от проходящего по нему полка кавалеристов.

В момент крушения на него также заехала колонна из одиннадцати саней. На такую нагрузку, конструкция, по-видимому, рассчитан не была, цепи оборвались, и все находящиеся на тот момент люди упали в Фонтанку.

Пресса говорила о том, что представители высших военных чинов, возглавлявшие полк, успели дойти до берега, тогда как основания часть кавалеристов, а также одна случайная женщина с ребенком – нет.

Это событие было встречено жителями Петербурга с определенной долей недоверия. К тому же Египетский мост ремонтировали за год до события, в 1904 году, и проводили укрепительные работы незадолго до самого крушения – я начале января.

По результатам расследования пришли к выводу, что причина обрушения кроется в низком качестве используемого при строительстве металла. Он оказался хрупким, и имел полости.

Это событие стало классической иллюстрацией силы резонанса, применяющейся по сей день на уроках физики в школах. Предположительно, кавалерийский полк, маршируя в одну ногу, создал настолько сильный резонанс, что опоры моста не выдержали.

Сейчас попадая на мост военным отдается приказ маршировать не в ногу, чтобы не рисковать. Есть и противники этой версии. Резонанс вполне мог быть причиной создания повышенной нагрузки, но свидетели говорят о том, что значительная часть полка передвигалась верхом, то есть ни о какой ходьбе в ногу речь не шла.

Применение египетского треугольника

В Древние века в архитектуре и строительстве египетский треугольник пользовался огромной популярностью. Особенно он был необходим, если для построения прямого угла использовали веревку или шнур.

Ведь известно, что отложить прямой угол в пространстве, является довольно таки сложным занятием и поэтому предприимчивые египтяне изобрели интересный способ построения прямого угла. Для этих целей они брали веревку, на которой отмечали узелками двенадцать ровных частей и потом с этой веревки складывали треугольник, со сторонами, которые равнялись 3 , 4 и 5 частям и в итоге без проблем, получали прямоугольный треугольник. Благодаря такому замысловатому инструменту, египтяне с огромной точностью размеряли землю для сельскохозяйственных работ, строили дома и пирамиды.

Вот так посещение Египта и изучение особенностей египетской пирамиды подтолкнуло Пифагора на открытие своей теоремы, которая, кстати, попала в Книгу Рекордов Гиннеса, как теорема, которая имеет самое большое количество доказательств.

Треугольные колеса Рело

Колесо— круглый (как правило), свободно вращающийся или закреплённый на оси диск, позволяющий поставленному на него телу катиться, а не скользить. Колесо повсеместно используется в различных механизмах и инструментах. Широко применяется для транспортировки грузов.

Колесо существенно уменьшает затраты энергии на перемещение груза по относительно ровной поверхности. При использовании колеса работа совершается против силы трения качения, которая в искусственных условиях дорог существенно меньше, чем сила трения скольжения. Колёса бывают сплошные (например, колёсная пара железнодорожного вагона) и состоящие из довольно большого количества деталей, к примеру, в состав автомобильного колеса входит диск, обод, покрышка, иногда камера, болты крепления и тд. Износ покрышек автомобилей является почти решённой проблемой (при правильно установленных углах колёс). Современные покрышки проезжают свыше 100 000 км. Нерешённой проблемой является износ покрышек у колёс самолётов. При соприкосновении неподвижного колеса с бетонным покрытием взлётной полосы на скорости в несколько сотен километров в час износ покрышек огромен.

  • В июле 2001 года на колесо был получен инновационный патент со следующей формулировкой: «круглое устройство, применяемое для транспортировки грузов». Этот патент был выдан Джону Кэо, юристу из Мельбурна, который хотел тем самым показать несовершенство австралийского патентного закона .
  • Французская компания Мишлен в 2009 году разработала пригодное к массовому выпуску автомобильное колесо Active Wheel со встроенными электродвигателями, приводящими в действие колесо, рессору, амортизатор и тормоз. Таким образом, эти колёса делают ненужными следующие системы автомобиля: двигатель, сцепление, коробку передач, дифференциал, приводной и карданный валы.
  • В 1959 году американец А. Сфредд получил патент на квадратное колесо. Оно легко шло по снегу, песку, грязи, преодолевало ямы. Вопреки опасениям, машина на таких колёсах не «хромала» и развивала скорость до 60 км/ч.

Франц Рело (Franz Reuleaux, 30 сентября 1829 — 20 августа 1905) — немецкий инженер-механик, лектор Берлинской Королевской Технической академии, ставший впоследствии ее президентом. Первым, в 1875 году, разработал и изложил основные положения структуры и кинематики механизмов; занимался проблемами эстетичности технических объектов, промышленным дизайном, в своих конструкциях придавал большое значение внешним формам машин. Рело часто называют отцом кинематики.

Египетский треугольник в строительстве. Общие сведения

Зарождение идеи

Идея у математика появилась после путешествия в Африку по просьбе Фалеса, который поставил задачу Пифагору изучить математику и астрономию тех мест. В Египте он среди бескрайней пустыни встретил величественные строения, поразившие его размером, изяществом и красотой.

Надо заметить, что более двух с половиной тысяч лет назад пирамиды были несколько другими – огромными, с четкими гранями. Тщательно изучив могущественные постройки, коих было не мало, так как рядом с великанами, стояли храмы поменьше, построенные для детей, жен и других родственных лиц фараона, это натолкнуло его на мысль.

Благодаря своим математическим способностям, Пифагор сумел определить закономерность в формах пирамиды, а умение анализировать и делать выводы привели к созданию одной из самых значимых теорий в истории геометрии.

Из истории

Знали ли в древнем Египте о геометрии и математике? Конечно да. Жизнь египтян была тесно связана с наукой. Они регулярно пользовались знаниями при разметке полей, создании архитектурных шедевров. Даже существовала своя служба землемеров, которые применяли геометрические правила, занимаясь восстановлением границ.

Название треугольник получил благодаря эллинам, которые нередко бывали в Египте в VII-V вв. до н.э. Считается, что прообразом фигуры стала пирамида Хеопса, отличающаяся совершенными пропорциями. Ее место особенное в истории. Если посмотреть поперечное сечение, то можно отметить два треугольника, у которых угол внутри равняется 51о50’.

Строение

Сегодня это строение усеченной формы, приобретенной под воздействием времени, высота явно потерялась. Однако, восстановив ее геометричность, можно сделать вывод, что стороны треугольников равны. Получается в основе заложен золотой прямоугольный треугольник.

Однако, следует рассмотреть другую пирамиду – Хефрена, у которой основа как раз-таки прямоугольный треугольник и где угол наклона боковых граней равен 53о12 с соотношением катетов 4:3. Это уже так называемый священный треугольник. Для египтян такая фигура сопоставлялась с семейным очагом: катет вертикального положения олицетворял мужчину, основание – представительницу прекрасного пола, а гипотенуза – рождение ребенка от обоих.

Стороны пирамиды Хефрена в соотношении равны 3:4:5, что точно соответствует теореме Пифагора. Значит, можно сделать вывод, что строители уже знали об этой теореме, но не могли ее сформулировать. Хотя, в исторических письменах встречаются следы использования египетского треугольника за много веков даже до Египта. До сегодняшнего дня это загадка, как могли такие знания получить древние египтяне. Понимали ли они чем обладают?

Особенность фигуры к тому же в том, что благодаря подобному соотношению, она является простым и первым Героновым треугольником, так как ее стороны и площадь целочисленные.

Обратное доказательство

Как доказать, что треугольник прямоугольный? Нужно порой исходить от обратного, то есть если сумма квадратов обеих сторон равна квадрату третьей, то треугольник прямоугольный, что подтверждает равенство 32х42=52 и значит он действительно прямоугольный.

Таким образом теорема Пифагора стала каноном и фундаментом развития математической науки. Со школьной скамьи каждый ученик знает, что означает выражение «Пифагоровы штаны во все стороны равны».

Интересно, что теорема Пифагора находится в Книге Гиннесса как теорема, обладающая самым большим количеством доказательств, которых примерно 500.

Особенности

Если рассмотреть более детально отличительные особенности египетского треугольника, то можно выделить следующие моменты:

  • все стороны и площадь состоят из целых чисел, как говорилось выше;
  • согласно теории великого математика, сумма квадратов катетов равна квадрату гипотенузе;
  • такой фигурой возможно отмерить прямые углы в пространстве. Это используется в процессе строительства до сих пор;
  • не обязательно пользоваться специальными измерительными приборами, подойдут подручные средства, например, веревка.