Ответ к задаче-головоломке №3: “как найти центр окружности”

Относительное положение двух окружностей

Концентрические и эксцентрические круги. Два круга называются концентрическими, когда они имеют один общий центр, и эксцентрическими, когда из центры не совпадают.

На чертеже 96 представлены круги концентрические и на чертежах 97, 98, 99, 100 и 101 круги эксцентрические.

Внешние и внутренние круги. Круги называются внешними, когда все точки одного лежат вне площади другого круга, и внутренними, когда все точки одного лежат внутри площади другого круга.

На чертежах 97 и 99 изображены круги внешние, на чертежах 96, 98 и 100 круги внутренние.

Касательные окружности. Окружности называются касательными, когда они имеют одну общую точку.

Общая точка двух касательных окружностей называется их точкой соприкосновения. Соприкосновение называется внешним, когда два круга, имея общую точку, лежат один вне другого, и внутренним, когда один круг лежит внутри другого. На черт. 99 имеем случай внешнего, а на чертеже 100 случай внутреннего соприкосновения.

Пересекающиеся окружности. Окружности называются пересекающимися, когда они имеют две общие точки (черт. 101).

Линия центров есть отрезок, соединяющий центры двух кругов.

Теорема 71. Две окружности, имеющие общую точку на линии центров, другой общей точки иметь не могут.

Дано. Две окружности с центрами O и O’ имеют общую точку A (черт. 102).

Требуется доказать, что другой общей точки у них нет.

Доказательство. Положим, существует другая общая точка B, следовательно,

OB = OA и O’B = O’A.

Складывая эти равенства, мы имели бы

OB + O’B = OA + O’A или
OB + O’B = OO’

равенство несообразное, ибо ломаная не может равняться прямой.

Итак, другой общей точки быть не может (ЧТД).

Теорема 72. Две окружности, имеющие одну общую точку вне линии центров, имеют и другую общую точку по другую сторону линии центров.

Дано. Две окружности, центры которых O и O’, имеют общую точку A вне отрезка OO’ (черт. 103), соединяющей центры.

Требуется доказать, что существует и другая общая точка по другую сторону центров.

Доказательство. Из точки A опустим на линию центров перпендикуляр AG и на продолжении его отложим отрезок BG, равный AG.

Докажем, что точка B будет другая общая точка. Точка B лежит на окружности O, ибо AO = BO как равные наклонные, находящиеся на равных расстояниях AG и BG от перпендикуляра OO’. Точка B лежит на окружности O’, ибо AO’ = BO’ как равные наклонные, находящиеся на равных расстояниях AG и BG от перпендикуляра OO’, следовательно, точка B есть другая общая точка (ЧТД).

Теорема 73. Если две окружности пересекаются в двух точках, то линия центров перпендикулярна и делит пополам хорду, соединяющую точки пересечения.

Дано. Точки A и B есть точки пересечения (черт. 104) двух окружностей.

Требуется доказать, что AG = BG и AB OO’.

Доказательство. Треугольники OAO’ и OBO’ равны, ибо OO’ сторона общая.

OA = OB как радиусы окружности O.

O’A = O’B как радиусы окружности O’.

Следовательно,

∠AOO’ = ∠BOO’

Треугольники AOG и BOG равны, ибо OG сторона общая, AO = BO как радиусы, ∠AOG = ∠BOG по доказанному. Следовательно, AG = BG (хорда AB делится линией центров пополам), ∠AGO = ∠BGO (хорда AB перпендикулярна к линии центров).

Таким образом, хорда AB делится пополам и перпендикулярна к линии центров OO’ (ЧТД).

Вписанные и описанные окружности

Окружность и треугольник

  • центр вписанной окружности — точка пересечения
    ,
    ее радиус r вычисляется по формуле:

r = ,

где S — площадь треугольника, а
полупериметр;

центр описанной окружности — точка пересечения
,
ее радиус Rвычисляется по формуле:

R =
,

R = ;

здесь a, b, c — стороны треугольника,
— угол, лежащий против стороны a, S — площадь треугольника;

центр описанной около окружности лежит на середине ;

центр описанной и вписанной окружностей треугольника совпадают только
в том случае, когда этот треугольник — .

Окружность и четырехугольники

  • около
    можно описать окружность тогда и только тогда, когда сумма его внутренних
    противоположных углов равна 180°:

 +
 =  +
 = 180°;

в можно вписать
окружность тогда и только тогда, когда у него равны суммы противоположных
сторон:

a
+ c = b + d
;

  • около можно
    описать окружность тогда и только тогда, когда он является ;
  • около
    можно описать окружность тогда и только тогда, когда эта
    — ; центр
    окружности лежит на пересечении оси симметрии
    с
    к боковой стороне;
  • в можно вписать
    окружность тогда и только тогда, когда он является .

Построение правильного треугольника, вписанного в окружность

Правила построения правильного треугольника, вписанного в окружность:

Отметить отрезок AB, чья длина будет равняться а.

Взять циркуль. Часть с иголкой расположить на т. А, а часть с карандашом на т. B. Прочертить окружность. В итоге, радиус круга будет равнозначен длине отрезка AB.

Далее иглу размещают на т. B, а часть с грифелем на т. A. Чертится круг. В итоге, его радиус будет равнозначен длине отрезка AB.

На чертеже окружности пересеклись в двух точках. Далее нужно соединить т. A и т. B и одну из вышеупомянутых точек. В результате получится равносторонний треугольник.

Стороны такого треугольника равнозначны радиусам двух окружностей, которые равны длине а. Задача решена.

Измерение углов

Центральные углы. Углы, имеющие вершину при центре, называются центральными углами.

Относительно этих углов имеют место следующие теоремы.

Теорема 74. Равным центральным углам в одной и той же окружности соответствуют равные дуги.

Дано. Углы AOB и COD равны (черт. 109).

Требуется доказать, что ◡AB = ◡CD.

Доказательство. Проведем хорды AB и CD и соединим точки A, B, C, D с центром. Два треугольника AOB и COD равны, ибо AO = CO и BO = DO как радиусы, ∠AOB = ∠COD по условию. Следовательно, хорды AB и CD равны.

Против равных хорд лежат равные дуги, следовательно и дуги AB и CD равны: ◡AB = ◡CD (ЧТД).

Теорема 75 (обратная 74). Равным дугам в одной и той же окружности соответствуют равные углы.

Дано. Дуги AB и CD равны (черт. 109).

Требуется доказать, что ∠AOB = ∠COD.

Доказательство. Из того, что дуги AB и CD равны, следует, что и хорды AB и CD тоже равны (теорема 61).

Два треугольника AOB и COD равны, ибо AB = CD как равные хорды, AO = CO и BO = DO как радиусы. Следовательно, ∠AOB = ∠COD (ЧТД).

Теорема 76. Отношение центральных углов равно отношению соответствующих им дуг.

Даны два центральные угла AOB и COD (черт. 110).

Требуется доказать, что

AOB/COD = AB/CD.

Доказательство. Здесь имеют место два случая:

1) Когда дуги AB и CD соизмеримы и 2) когда они несоизмеримы.

1-й случай. Дуги AB и CD соизмеримы.

Пусть дуга AE будет их общей мерой. Положим, что она p раз содержится в дуге AB и q раз в дуге CD. Разделив дугу AB на p, а CD на q равных частей и соединив точки деления дуг с центром O, мы разделим угол AOB на p, а угол COD на q равных углов, из которых каждый равен углу AOE.

Из равенств

AB = pAE, CD = qAE
AOB = pAOE, COD = qAOE

получаем

AOB/COD = p/q, AB/CD = p/q, откуда
AOB/COD = AB/CD (ЧТД).

2-й случай. Дуги AB и CD несоизмеримы.

Отложим дугу AF равную CD и соединим F с O. Углы AOF и COD равны.

Требуется доказать, что

AOB/AOF = AB/AF

Доказательство. A) Положим

AOB/AOF > AB/AF (1).

Для того, чтобы имело место равенство, нужно дробь во второй части неравенства (1) увеличить. Для этого следует ее знаменатель уменьшить.

Положим, мы нашли, что имеет место равенство

AOB/AOF = AB/AG (a)

Разделим дугу AB на равное число таких частей, чтобы каждая часть была менее GF; тогда одна из точек деления i упадет в промежутке между G и F. Дуги AB и Ai соизмеримы, следовательно,

AOB/AOi = AB/Ai (b).

Разделив равенства (b) на (a), находим

AOF/AOi = AG/Ai

равенство несообразное, ибо первая часть его больше, а вторая меньше 1, следовательно, допущение (1) не имеет места.

B) Допустим, что

AOB/AOF < AB/AF (2)

Тогда вторую часть этого неравенства нужно уменьшить для того, чтобы имело место равенство. Для этого нужно знаменатель дроби AB/AF увеличить. Положим, мы нашли такую точку H, чтобы удовлетворялось равенство

AOB/AOF = AB/AH (c)

Разделив дугу AB на такие равные части, чтобы каждая часть была меньше FH, мы найдем, что одна из точек деления J упадет в промежуток между F и H. Дуги AB и AJ будут соизмеримы, следовательно,

AOB/AOJ = AB/AJ (d)

Разделив равенство (d) на (c) найдем

AOF/AOJ = AH/AJ

Это равенство несообразно, ибо первое отношение меньше, а второе больше единицы, следовательно, и допущение (2) тоже не имеет места, откуда видно, что справедливо только равенство AOB/AOF = AB/AF (ЧТД).

Зная, что отношение углов равно отношению дуг, описанных равными радиусами, мы в пропорции (черт. 111)

AOB/COD = AB/CD

можем принять за единицу любую дугу. В этом случае должны принять за единицу и соответствующий ей угол.

Принимая дугу CD, а следовательно, и угол COD за 1, имеем равенство

AOB/1 = AB/1

или отношение угла к своей единице равно отношению дуги к своей соответствующей единице, откуда

∠AOB = ◡AB.

Это равенство означает, что

числовая величина угла равна числовой величине дуги, или что угол измеряется дугой, описанной из его вершины, как из центра.

Наши курсы по подготовке к ЕГЭ по математике, информатике и физике

К ЕГЭ можно подготовиться . У нас на сайте полно качественных материалов. Но вы должны знать что вы делаете. 

  • У вас должен быть план, чтобы вы шли от простого к сложному и не «захлебнулись». 
  • Вас должен кто-то проверять и указывать короткий путь, чтобы вы не теряли время.
  • Вас должен кто-то мотивировать, чтобы вы не бросили все.

Если у вас с этим сложности, приходите к нам.

  • Начните с нашего гида о том как подготовиться к ЕГЭ по математике.
  • Посетите наши бесплатные вебинары по математике, информатике и физике.

И если вам нужен действительно высокий балл, приходите на наши курсы: 

  • Подготовка к ЕГЭ по математике
  • Подготовка к ЕГЭ по информатике
  • Подготовка к ЕГЭ по физике

Расстояние между центрами окружностей

1. Если две окружности пересекаются в двух точках, расстояние центров меньше суммы и больше разности радиусов.

Действительно, с одной стороны (черт. 104)

OO’ < AO + AO’

с другой

AO + OO’ > AO’

следовательно,

OO’ > AO’ — AO

2. Если две окружности касаются, расстояние центров равно сумме радиусов, если соприкосновение внешнее, и разности радиусов, если соприкосновение внутреннее.

Из чертежа 105 видно, что

OO’ = AO + AO’

а из чертежа 106

OO’ = AO — AO’.

3. Если одна окружность лежит вне другой, расстояние центров больше суммы радиусов.

Из чертежа 107 видно, что

OO’ > AO + BO’

4. Если окружность лежит одна внутри другой, расстояние центров меньше разности радиусов.

Действительно, из чертежа 108 видно, что

OO’ < AO — BO’.

Правило встречается в следующих упражнениях:

7 класс

Задание 18,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 180,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 631,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 698,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 5,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 713,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 895,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 7,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 10,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1131,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Диаметр круга

Нарисуйте две окружности с радиусом 3 см. Фигуру справа закрасьте желтым карандашом. Получится круг.В обеих фигурах проведите диаметры и радиусы.

Измерьте диаметр окружности и диаметр круга. Сколько у вас получилось?

Правильно, 6 см. Радиус круга равен 3 см. Он два раза помещается в диаметре, значит это половина или одна вторая доля от целого.

6 : 3 = 2

Радиус круга равен половине или 1/2 диаметра.

Путем несложных математических вычислений можно понять, что диаметр в 2 раза больше радиуса.

АВ = АО + ОВ

Решите задачу

Третьеклассник вырезал круг радиусом 50 мм. Сколько сантиметров в его диаметре?

Решение:

50 ∙ 2 = 100 (мм)
100 мм = 10 см

Ответ: диаметр круга равен 10 см.

Вы хорошо справились.

Нам пора провести зарядку для глаз, чтобы сберечь зрение.

Физкультминутка

  1. Зажмурьтесь, потом откройте глаза шире. Лоб остается гладким без морщин. Повторите упражнение три раза.
  2. Теперь подойдите к окну, посмотрите вдаль. Внимательно вглядитесь, потом попытайтесь увидеть кончик носа. Получилось? Тогда повторяйте упражнение четыре раза. Не спешите.
  3. Медленно делайте круговые движения снизу вверх, направо, вниз, влево глазами, как будто вращаете большое колесо, 2 раза в одну сторону. Теперь обратно. Не двигайте головой, следите только глазами.
  4. Найдите взглядом верхний правый угол комнаты, хлопните в ладоши, опустите взор на кончик носа.Смотрите вверхний левый угол, далее на кончик носа. Повторите пять раз.
  5. Прикройте глаза, 10 секунд постойте спокойно, ровно неглубоко подышите.

Ребята, я тоже люблю укреплять здоровье. Вчера пошел на хоккейную площадку. Но вместо игры попросили начертить круги больших диаметров, чтобы обновить разметку поля.

Задача 1

Как начертить без циркуля круг для вбрасывания шайбы диаметром 300 мм?

Решение:

300 мм = 30 см

Радиус круга равен половине диаметра.

30 : 2 = 15 (см)

Возьмите гвоздь, карандаш, нитку длиной 15 см. Начертите окружность как показано на рисунке.

 

Задача 2

Из центра поля нужно нарисовать круг синей краской диаметром 9 метров.

Рассуждаем: диаметр круга 9 м, значит радиус — половина.

9 м = 900 см

900 : 2 = 450 (см) = 4 м 50 см.

На центральную точку встает друг Гвоздик, крепко держит конец веревки, а к другому концу нужно закрепить кисть с краской. Фиксик Игрек на коньках едет вокруг Гвоздика, рисует линию окружности. Главное — туго натягивать веревку, чтобы радиус в 450 см не уменьшался. Вот такая разметка получается в центре хоккейной площадки:

 

После работы пора поиграть в хоккей.

Похожим способом можно начертить 7 окружностей больших диаметров на картоне для новогодней елки. Посмотрите на рисунок, какая красавица получается.

Поделку делайте вместе с родителями. Для больших кругов возьмите карандаш, гвоздик и нитку. Маленькие — нарисуйте циркулем. Понадобится начертить всего 11 окружностей для десяти обручей елки.

 

Задача 3

Диаметр первого нижнего круга елки равен 80 см, а каждого следующего уменьшается на 8 см. Найдите, чему равны диаметры следующих кругов.

Какой диаметр маленького круга наверху у елки?

Для решения задачи вспомните таблицу умножения на 8.

Обратный отсчет диаметров круга по таблице 80, 72, 64, 56, 48, 40, 32, 24, 16, 8.

Диаметр маленького круга 8 см.

Вы отлично выполнили вычисления.

Теперь отгадайте новую загадку. Что идет, не двигаясь с места? (Правильно, это время.)

Построение перпендикулярных прямых

Пример 1

Точка O находится на прямой a.

Есть прямая и точка, находящаяся на ней. Нанести линию, идущую через существующую точку и находящуюся под прямым углом к имеющейся прямой.

  1. Шаг 1. Чертим круг с рандомным радиусом r с серединой в т. O. Окружность соприкасается с прямой в т. A и т. B.
  2. Шаг 2. Из имеющихся точек строится круг с радиусом AB. Точки С и D являются точками соприкосновения окружностей.

Приложив линейку, чертят прямую, сквозь т. O и одну из т. C или т. D, к примеру отрезок OC.

Доказательство, что прямая OC лежит перпендикулярно a.

Намечаются два отрезка — AC и CB. Получившиеся треугольники будут равны, согласно третьему признаку равенства треугольников. Значит, прямая CO перпендикулярна AB.

Пример 2

Точка O находится вне прямой а.

Нарисовать окружность с радиусом r из т. O. Она должна проходить сквозь прямую a. A и B — точки её соприкосновения с прямой.

Оставив прежний радиус, рисуем окружности с серединой в т. A и т. B. Точка O1 — место их соприкосновения.

Рисуем линию, соединяющая т. O и т. O1.

Доказательство выглядит следующим образом.

Две прямые ОО1 и AB пересекаются в т. C. Согласно третьему признаку равенства всех треугольников AOB = BO1A. Из данного вывода следует, что угол OAC = O1AC. Одноименные треугольники также будут равны (согласно первому признаку равенства всех треугольников).

Исходя из этого, выводим, что угол OCA = O1CA, а, учитывая смежность углов, приходим к пониманию, что они прямые. А это означает, что OC – перпендикулярный отрезок, опущенный из т. O на прямую a. Задача решена.

Ход занятия:

Новый материал:

Рубрика «Это интересно!»

С незапамятных времен человек использовал в своей жизни простейшие геометрические построения. Одним из таких построений является деление окружности на равные части. Примеров можно привести много. Превращение колеса из сплошного диска в обод со спицами поставило человека перед необходимостью распределить спицы в колесе равномерно.

С делением окружности неразрывно связано построение правильных многоугольников. Правильные многоугольники встречаются в древнейших орнаментах у всех народов.

В декоративно- прикладном искусстве дизайнеры, ювелиры и представители многих других профессий с успехом применяли деление окружности, создавая прекрасные произведения. Это ордена, медали, монеты и ювелирные украшения.

Орден Красной Звезды Орден Отечественной войны

Самым распространенным примером применение деления окружности на равные части является создание логотипов, эмблем, товарных знаков различных фирм. Иногда достаточно увидеть эмблему на капоте или крыле автомобиля и безошибочно назвать марку.

Показ наглядных пособий использования геометрических построений в строительстве, архитектуре, машиностроении, а также природные явления.

Построение круга, окружности.

Круг – это часть плоскости, ограниченная окружностью.

Окружность – замкнутая плоская кривая, все точки которой равноудалены от центра.

Чтобы изобразить круг, достаточно взять блюдце или тарелку и обвести.

Для построения окружности необходимо найти центр. Из центра циркулем провести окружность.

Этапы построения:

  1. Начертить квадрат.
  2. Разделить стороны квадрата на две равные части, отметить буквами или цифрами.
  3. Через полученные точки провести центровую линию (штрихпунктирную) Сначала горизонтальную, затем вертикальную.
  4. Пересечение линий отметить точкой О – центр окружности.
  5. В точку О поставить ножку циркуля и начертить окружность. Центр окружности является также и центром круга.

Запомнить: в центре должны обязательно пересекаться штрихи, проведенных центровых (осевых) линий, а не точки. В окружностях меньших размеров допускается проводить вместо штрихпунктирных линий тонкие линии построения.

Для построения окружностей и кругов используют трафареты.

Демонстрация, показ.

Деление окружности на равные части.

Любая прямая, проведенная через центр окружности, делит эту окружность на две равные части. Две взаимно перпендикулярные прямые, проведенные через центр окружности, делят эту окружность на 4 равные части.

Окружность можно разделить на 8 равных частей, используя линейку или угольники.

Демонстрация, показ.

Если соединить, полученные при делении точки окружности, то мы получим правильные многоугольники.

При делении окружности на 3, 6, 12 равных частей используют не только угольники, но и циркуль. В результате построения можно увидеть правильный равносторонний треугольник, правильный шестиугольник (рисунок 5)

Демонстрация, показ.

Закрепление:

Фрагмент из рабочей тетради.

Приготовь для работы циркуль, карандаш с маркировкой Т и ТМ, линейку, трафарет. Все построения выполняй аккуратно.

Используя трафарет с окружностями, изобрази круг.

Для построения окружности необходимо провести штрихпунктирные линии. Эти линии состоят из штриха и точки. При пересечении они образуют центр окружности и являются центровыми или осевыми линиями.

Установи ножку циркуля в центре пересечения осевых (центровых) линий и проведи окружность.

Этапы построения окружности:

  1. Начертить квадрат.
  2. Разделить все стороны квадрата на две равные части, отметить полученные точки.
  3. Через точки провести центровую линию (штрихпунктирную) карандашом с маркировкой Т. Сначала горизонтальную, затем вертикальную.
  4. Пересечение линий отметить точкой О – центр окружности.
  5. В точку О поставить ножку циркуля и начертить окружность.

Центр окружности является также и центром круга.

Доказательство теоремы

Центр этой окружности – точка пересечения серединных перпендикуляров к сторонам треугольника.

Смотри, вот так:

Давай наберёмся мужества и докажем эту теорему.

Если ты читал уже тему «Биссектриса» разбирался в том, почему же три биссектрисы пересекаются в одной точке, то тебе будет легче, но и если не читал – не переживай: сейчас во всём разберёмся.

Доказательство будем проводить, используя понятие геометрического места точек (ГМТ).

Геометрическое место точек, обладающих свойством «\( \displaystyle X\)» – такое множество точек, что все они обладают свойством «\( \displaystyle X\)» и никакие другие точки этим свойством не обладают.

Ну вот, например, является ли множество мячей – «геометрическим местом» круглых предметов? Нет, конечно, потому что бывают круглые …арбузы.

А является ли множество людей, «геометрическим местом», умеющих говорить? Тоже нет, потому что есть младенцы, которые говорить не умеют.

В жизни вообще сложно найти пример настоящего «геометрического места точек». В геометрии проще. Вот, к примеру, как раз то, что нам нужно:

Тут множество – это серединный перпендикуляр, а свойство «\( \displaystyle X\)» – это «быть равноудаленной (точкой) от концов отрезка».

Проверим? Итак, нужно удостовериться в двух вещах:

  • Всякая точка на серединном перпендикуляре находится на одинаковом расстоянии от концов отрезка
  • Всякая точка, которая равноудалена от концов отрезка – находится на серединном перпендикуляре к ему

Приступим:

Проверим 1. Пусть точка \( \displaystyle M\) лежит на серединном перпендикуляре к отрезку \( \displaystyle AB\).

Соединим \( \displaystyle M\) с \( \displaystyle A\) и с \( \displaystyle B\).Тогда линия \( \displaystyle MK\) является медианой и высотой в \( \displaystyle \Delta AMB\).

Значит, \( \displaystyle \Delta AMB\) – равнобедренный, \( \displaystyle MA=MB\) – убедились, что любая точка \( \displaystyle M\), лежащая на серединном перпендикуляре, одинаково удалена от точек \( \displaystyle A\) и \( \displaystyle B\).

Теперь 2. Почти точно так же, но в другую сторону. Пусть точка \( \displaystyle M\) равноудалена от точек \( \displaystyle A\) и \( \displaystyle B\), то есть \( \displaystyle MA=MB\).

Возьмём \( \displaystyle K\) – середину \( \displaystyle AB\) и соединим \( \displaystyle M\) и \( \displaystyle K\). Получилась медиана \( \displaystyle MK\). Но \( \displaystyle \Delta AMB\) – равнобедренный по условию \( \displaystyle (MA=MB)\Rightarrow MK\) не только медиана, но и высота, то есть – серединный перпендикуляр. Значит, точка \( \displaystyle M\) – точно лежит на серединном перпендикуляре.

Всё! Полностью проверили тот факт, что серединный перпендикуляр к отрезку является геометрическим местом точек, равноудаленных от концов отрезка.

Это все хорошо, но не забыли ли мы об описанной окружности? Вовсе нет, мы как раз подготовили себе «плацдарм для нападения».

Рассмотрим треугольник \( \displaystyle ABC\). Проведём два серединных перпендикуляра \( \displaystyle {{a}_{1}}\) и \( \displaystyle {{a}_{2}}\), скажем, к отрезкам \( \displaystyle AB\) и \( \displaystyle BC\). Они пересекутся в какой-то точке, которую мы назовем \( \displaystyle O\).

А теперь, внимание!

Точка \( \displaystyle O\) лежит на серединном перпендикуляре \( \displaystyle {{a}_{1}}\Rightarrow OA=OB\);точка \( \displaystyle O\) лежит на серединном перпендикуляре \( \displaystyle {{a}_{2}}\Rightarrow OB=OC\).И значит, \( \displaystyle OA=OB=OC\) и \( \displaystyle OA=OC\).

Единицы времени

Каждый человек хочет понять время. Оно нам нужно, потому что мы живем по режиму, а магазины, библиотеки, вокзалы — по расписанию. Определенное количество дел намечаем сделать в единицу времени.

Давайте познакомимся с единицами измерения времени.

Земля обращается вокруг Солнца за 365 суток. Это год. Один раз в 4 года он увеличивается на сутки, и называется високосным.

С глубокой древности круг считается символом годовых сезонных циклов: зимы, весны, лета и осени. Рассмотрите рисунок годового круга: он поделен на 4 доли — четыре времени года.

Единица величины каждого времени года делится на 3 месяца.

В году 3 ∙ 4 = 12 месяцев. Месяц — единица времени, за которую Луна обходит планету Земля вокруг.

В каждом месяце 30 или 31, а в феврале 28 или 29 суток.

Исторически основной единицей для времени были сутки (часто говорят «день»). За одни сутки Земля поворачивается вокруг своей оси.

 

В результате деления суток на меньшие временные интервалы возникли часы, минуты и секунды. Сутки – единица времени, равная 24 часам. Один час — это 60 минут. Минута состоит из 60 секунд.

Выполните задания

1. Выразите время в указанных единицах измерения

8 ч 25 мин. = … мин.

95 мин. = … ч … мин.

2 мин. 14 сек. = … сек.

187 сек. = … мин. … сек.

Решение:

1 час = 60 мин. Значит, в восьми часах будет в 8 раз больше. Нужно выполнить умножение.

60 ∙ 8 = 480 (мин.)

 В 8 часах — 480 минут да еще 25 мин. Действие сложения.

480 + 25 = 505 (мин.)

Ответ: 8 ч 25 мин. = 505 мин. 

Дальше решайте аналогично:

2 мин. 14 сек. = 60 ∙ 2 + 14 = 134 сек.

95 мин. = 1 ч 35 мин.

187 сек. = 3 ч. 7 сек.

2. Выберите единицы времени, которые расположены в порядке возрастания

а) час, минута, секунда 

б) секунда, минута, час 

в) минута, час, секунда

Проверьте себя.

Правильный ответ — б.

3. Автомобиль до Москвы едет 2 суток, а обратно 48 часов. Почему такая разница?

Проверьте себя.

2 сут. = 48 ч. Разницы нет.

Наш урок подходит к концу. Я надеюсь, что вы будете ценить свое время, не будете терять его зря.

Я с вами прощаюсь, а вы проверьте свои знания.

Шаг

Метод 1 из 3: рисование пересекающихся линий

  1. Нарисовать круг.

    Компас — это устройство, специально разработанное для рисования и измерения кругов. Купите их в школе или магазине канцелярских товаров.

    Используйте компас или обведите круглые объекты. Размер круга не важен. Если вы хотите найти центр существующего круга, вам не нужно рисовать новый круг.

  2. Между двумя точками протяните тетиву.

    При рисовании линий используйте карандаш. Таким образом, уже нарисованные отметки можно стереть после нахождения центра круга. Слегка нарисуйте его, чтобы его было легко стереть.

    Хорда — это прямая линия, соединяющая любые две точки на стороне круга. Назовите эту тетиву AB.

  3. Нарисуйте вторую тетиву. Эта линия должна быть параллельна первой струне и иметь такую ​​же длину. Назовите эту тетиву CD.

  4. Нарисуйте линию, соединяющую A и C. Этот третий аккорд (AC) будет проходить через центр круга, но вам нужно будет провести еще одну линию, чтобы найти точный центр круга.

  5. Соедините точки B и D. Проведите последнюю линию хорды (BD) через круг между точками B и D. Эта новая линия прорежет третий проведенный аккорд.

  6. Найдите центральную точку. Если вы проведете линию прямо и точно, центр круга будет там, где пересекаются линии AC и BD. Отметьте центральную точку ручкой или карандашом. Если вы хотите отметить только центральную точку, сотрите четыре нарисованные линии.

Метод 2 из 3: Использование пересекающихся кругов

  1. Проведите линию, соединяющую две точки. С помощью линейки или прямого предмета проведите прямую линию внутри круга от одной стороны до другой. Можно использовать любую точку. Отметьте эти две точки буквами A и B.

  2. С помощью циркуля нарисуйте два пересекающихся круга.

    Этот круг нарисуйте карандашом, а не ручкой. Процесс будет проще, если вы сможете удалить эти круги позже.

    Два круга должны быть одинакового размера. Используйте A как центр первого круга, а B как центр другого круга. Расположите два круга так, чтобы они пересекались, как диаграмма Венна.

  3. Проведите вертикальную линию через два пересечения двух кругов. На «диаграмме Венна» есть точка вверху и точка внизу, образованная пересекающимися кругами. С помощью линейки проведите линию, идущую прямо от этих двух точек. Затем отметьте две точки (C и D) в точке пересечения с начальной окружностью. Эта линия отмечает диаметр исходного круга.

  4. Удалите оба пересекающихся круга. Очистите бумагу перед выполнением следующего процесса. Теперь у нас есть круг с двумя перпендикулярными линиями. Не удаляйте точки A и B из этого круга! Мы собираемся нарисовать два новых круга.

  5. Нарисуйте два новых круга. С помощью циркуля нарисуйте два круга равной величины: один с точкой C в качестве центра, другой с центром в точке D. Эти два круга также должны пересекаться, как на диаграмме Венна. Помните: C и D — это точки на вертикальной линии, пересекающей главный круг.

  6. Проведите линию через пересечение этих двух новых кругов. Горизонтальная прямая линия пересечет область этих двух новых кругов. Эта линия является вторым диаметром исходной окружности и будет точно перпендикулярна первому диаметру.

  7. Найдите центральную точку. Пересечение двух центральных линий — это положение центра круга! Отметьте эту центральную точку как ориентир. Если вы хотите очистить бумагу, просто сотрите все существующие линии диаметра и лишние круги.

Метод 3 из 3: использование прямых объектов на линейке треугольников

  1. Нарисуйте две прямые касательные к сторонам круга. Эту линию можно провести с любого места. Однако этот процесс будет проще, если вы нарисуете две линии, которые приблизительно соответствуют квадратному или квадратному изображению.

  2. Нарисуйте параллельные линии с первыми двумя линиями на противоположной стороне круга. Это дает нам четыре касательных к окружности, образующей параллелограмм или более или менее квадрат.

  3. Нарисуйте диагонали параллелограмма. Пересечение диагоналей этого параллелограмма и есть центр окружности.

  4. Проверьте точность этого центра с помощью компаса. Полученная вами центральная точка будет правильной, если вы не пропустите при рисовании линии или диагонали. Если хотите, можете удалить параллелограммы и диагональные линии.

Построение правильного четырехугольника вписанного в окружность

Вариант 1

Исходя из данности, что диагонали любого квадрата пересекаются в середине окружности и находятся по отношению к его осям под углом 45 градусов, производят следующие действия. Пользуясь линейкой и уголком с углами 45 градусов (см. рисунок), размечают вершины т. 1 и т. 3.

Сквозь данные точки чертят отрезки, стороны четырехугольника, расположенные по горизонтали. Это т. 4 и т. 1, т. 3 и т. 2. В конце линейкой и уголком по его катету проводятся линии, расположенные по вертикали (высоты), отрезок т.1 — т. 2 и отрезок т. 4 — т. 3.

Вариант 2

Так как вершины правильного четырехугольника разделяют наполовину дуги окружностей, между точками диаметра (см. рисунок), то для достижения результата делают следующее: отмечают на точках перпендикулярных диаметров т. A, т. B и т. C и рисуют дуги до их соприкосновения.

После чертят прямые через места соприкосновения дуг, которые выделены на фигуре линиями. Точки соприкосновения с окружностью будут являться вершинами — это т. 1 и т. 3, т. 4 и т. 2. Данные вершины полученного квадрата соединяют друг с другом.

Задача выполнена двумя способами.