Моя тесла-лаборатория. конденсатор переменной емкости

Оглавление

Высоковольтный конденсатор своими руками расчет

Конденсатор – детям не игрушка

(Архив пионерской мудрости)

Страшная история из нефильма ужасов

Конденсатор является одним из главных элементов в блоке питания импульсных лазеров. Высоковольтный конденсатор используется для питания импульсных ламп-вспышек, а также для накачки импульсных газоразрядных лазеров. Параметры конденсатора выбираются в зависимости от конкретного типа лазера. Определяющими являются такие величины как емкость, рабочее напряжение, волновое сопротивление и собственная индуктивность конденсатора. От емкости и рабочего напряжения конденсатора зависит энергия накачки. Энергия конденсатора рассчитывается по простой формуле

Е = СU 2 /2, где Е – энергия конденсатора

С – емкость конденсатора

U – напряжение зарядки конденсатора

Lк – индуктивность конденсатора

Это классический колебательный контур с активным сопротивлением R, которое зависит от диэлектрика между обкладками конденсатора и удельного сопротивления всех токоведущих элементов конденсатора. Таким образом, заряд и разряд конденсатора происходит не мгновенно, а имеет колебательный характер. Частота колебаний определяется формулой Томпсона, из которой и вычисляется собственная индуктивность конденсатора.

, где Lк – собственная индуктивность конденсатора

fp – основная резонансная частота

Разумеется, чем выше энергия конденсатора, тем больше мощность накачки. Однако с увеличением емкости конденсатора возрастает и время импульса накачки. Если длительность накачки не имеет принципиального значения, то для работы лазера подойдут высоковольтные электролитические конденсаторы. Такие конденсаторы можно использовать, например, для накачки рубинового или неодимового лазера. Конечно, проблематично раздобыть кондер, имеющий 1000 мкФ при рабочем напряжении 3 кВ. Но эта проблема легко решается, если использовать банк конденсаторов. При последовательном соединении отдельных конденсаторов суммарное напряжение зарядки возрастает, а емкость можно увеличить параллельным подключением конденсаторов. В радиотехнических магазинах можно купить электролитические конденсаторы, имеющие, например, 150 мкФ х 450 В.

Из таких конденсаторов можно составить банк на любую емкость и рабочее напряжение. На рисунке ниже показан пример банка конденсаторов, эквивалентный одному конденсатору на 30 мкФ х 2 кВ.

Если длительность накачки должна быть как можно меньше, то для работы лазера электролитические конденсаторы уже не подходят, и нужно приобретать импульсные конденсаторы. К сожалению, в радиотехнических магазинах импульсные высоковольтные конденсаторы – товар редкий. В магазине «Чип и Дип» можно затариться высоковольтными конденсаторами .

Конструктивные особенности ионистра

По сути, это обычный конденсатор с большой емкостью. Но у ионистров большое сопротивление, потому что в основе элемента лежит электролит. Это первое. Второе – это небольшое напряжение зарядки. Все дело в том, что в этом суперконденсаторе обкладки располагаются очень близко друг к другу. Именно это и является причиной сниженного напряжения, но именно по этой причине и увеличивается емкость конденсатора.

Заводские ионистры изготавливаются из разных материалов. Обкладки обычно делаются из фольги, которые разграничивает сухое вещество сепарирующего действия. К примеру, активированный уголь (для больших обкладок), оксиды металлов, полимерные вещества, у которых высокая электрическая проводимость.

Моя Тесла-лаборатория. Конденсатор переменной емкости.

Это изделие не является полностью самостоятельным. Это только часть более сложного прибора, модель, которая предназначена для проверки технологии. Но недавняя публикация hamster76 — замечательный радиоприемник показал мне, что этой разработкой стоит поделится. Поэтому пишу в «Помощь стим-мастеру» В свой публикации hamster76 рассказал о своих проблемах с поврежденным конденсатором, но ведь переменный конденсатор — сам по себе Тесла-прибор! Теслапанк конденсатор вполне может украсить какой-либо прибор.

В 20-х годах из двух способов настройки приемника — изменение индуктивности и изменение емкости в колебательном контуре предпочтение отдавалось изменению индуктивности. Первая причина этого — теоретическая: такая схема, потенциально, позволяет получить большую добротность контура и, как следствие, лучшие качества радиоприема. Вторая — технологическая. Конденсатор переменной емкости — сложный механический прибор, требующий высокой точности изготовления. Уже в 30-е годы ситуация изменилась — с одной стороны технические возможности радиопромышленности выросли, с другой стороны распространение супергетеродинной схемы приема требовало синхронной перестройки двух контуров одновременно, а сдвоенный конденсатор переменной емкости оказалось изготовить проще, чем сдвоенный вариатор. С тех пор вплоть до самого конца XX века переменный конденсатор стал практически обязательным элементом любого радиоустройства.

Главные требования к конденсатору это: 1) Непрерывность электрического контакта. В моменты когда конденсатор «отрывается» от схемы или, наоборот, «закорачивается», радиослушатель слышит очень неприятные щелчки. 2) Плавность хода. При плохой механике очень трудно настроится на станцию, и «удерживать волну» в дальнейшем. 3) Большой диапазон перестраиваемой емкости — позволяет захватить больше станций. 4) Малая минимальная емкость.

Для того, чтобы избежать проблемы плохого контакта ротора использована схема бесконтактного взаимодействия со статором. Пластины ротора никуда не подключены, они взаимодействуют со статором только через емкость дополнительных обкладок, это позволяет избежать проблемы плохого контакта. При повороте ротора емкости между пластинами перераспределяются, и общая емкость конденсатора меняется.

Такая конструкция имеет недостатки: больший, чем в других схемах, размер обкладок, нелинейность изменения емкости при повороте ротора, малый «рабочий диапазон» поворота ротора. Угол между положениями максимальной и минимальной емкости получается всего 90 градусов.

Зато конструкция получается очень простой, без подвижных электрических контактов. Кроме того, симметрия конструкции значительно облегчает устройство поворотной оси.

Конденсатор состоит из деревянных основания — статора и вращающейся на оси ручки — ротора. Они вырезаны из доски с помощью коронок и обточены на оси дрели

Диаметр статора (это, впрочем, совсем не важно.) 120 мм, диаметр ротора (а вот он влияет на максимальную емкость!) — 80 мм. Между статором и ротором вставлена изолирующая прокладка из тонкого картона

И на статоре и на роторе закреплены (маленькими гвоздиками) одинаковые полукруглые пластины из жести, пластины статора соединены проволокой с клеммами. Ось изготовлена из винта, на который надета скользкая пластмассовая трубка. Снизу оси, в выемке статора, установлена коническая пружина, взятая от контейнера для батареек. Пружина обеспечивает равномерность сжатия деталей и равномерность вращения. Сверху конструкцию фиксирует декоративная гайка.

Получившийся конденсатор имеет емкость 6-30 пФ. Это не очень много. Диапазон перестройки для длинных и средних волн должен быть около 40, для ультракоротких — 10. Самый простой способ улучшить характеристики — увеличить размер. Увеличение размера обкладок увеличит максимальную емкость. Кроме того, выяснилось, что большая часть минимальной емкости — это емкость массивных клемм, расположенных слишком близко друг к другу. Подключения к обкладкам стоило делать на максимальном расстоянии друг от друга.

Порядок дальнейших действий для изготовления сварочного аппарата

Удаляем с катушек всю вторичную обмотку

При этом важно не повредить первичную. Пронумеровываем каждую катушку, которую создаём

Нужны провода для сварочного аппарата, созданного своими руками. Для этого срединную катушку обматываем проводом, взятым с обмотки. На каждые 30 кругов выполняем десяток отводов. Обе катушки, которые находятся по краям, наполняем многожильным кабелем.

Делаем клемму. Используем медную трубу с диаметром в 10 миллиметров – одна сторона обжимает. Вторую надо расплющить и просверлить. Она понадобится для крепления.

На трансформаторе заменяем крепёж на более мощный, крепим клеммы. Делаем плату для ПО. Она изготавливается из текстолита. Должно быть десять отверстий, и в каждое вставляется крепёж.

Такой полученный сварочный аппарат может питаться от 220 вольт. Для этого в завершение процесса обмотки с краёв параллельно соединяют. Среднюю также подсоединяют в эту цепь последовательно. Отводы устанавливают в клеммы изготовленной платы. Ток регулируем клеммами.

Изготовить сварочный аппарат можно и другими способами. Например, хорошо известно, что сварочный аппарат делают из автомобильных аккумуляторов. Для этого берут несколько аккумуляторов, последовательно их соединяют.

При объединении аккумуляторов нужно использовать очень надёжные зажимы.

Такой вид сварочного аппарата очень придётся кстати в полевых условиях. Его можно быстро создать самостоятельно. В дело могут пойти даже отработанные аккумуляторы (недействующие).

Нужно помнить о том, что аккумуляторы быстро нагреваются, поэтому, не получится очень долг их использовать. Кроме того, нельзя забывать о том, что из них при повышенных нагрузках быстро испаряется электролит и жидкость.

За счёт аккумуляторных батарей достаточно практичным свойством является то, что такой аппарат можно поставить на зарядку на ночь. Утром он будет готов к использованию.

Схемы подключения при рабочем напряжении в 380 В

Выпускаемые промышленностью асинхронные трехфазные двигатели возможно подключить двумя основными способами:

Электродвигатели конструктивно выполняются из подвижного ротора и корпуса, в который вставлен находящийся неподвижно статор (может быть собран непосредственно в корпусе или вставляться туда). Статор имеет в своем составе 3 равнозначные обмотки, специальным образом намотанные и расположенные на нем.

При соединении «звездой» концы всех трех обмоток двигателя соединяются вместе, а к их началам подаются три фазы. При соединении обмоток «треугольником» конец одной соединяется с началом следующей.


Соединение треугольник и звезда.

Положительные и отрицательные стороны

К числу безусловных преимуществ этих устройств относятся следующие качества:

  • разрядка и заряд устройства не занимает много времени, что позволяет их использовать в тех случаях, когда аккумуляторы установить не представляется возможным из-за долгой подзарядки;
  • по сравнению с аккумуляторными батареями у ионисторов значительно больше циклов полного заряда-разряда устройства;
  • чтобы произвести подзарядку, не понадобится специальное зарядное оборудование, следовательно, упрощается обслуживание;
  • радиодетали этого типа гораздо легче аккумуляторов и меньше их по габаритам;
  • широкий диапазон рабочей температуры – от -40 до 70С°;
  • срок эксплуатации во много раз больше, чем его имеют силовые конденсаторы и аккумуляторные батареи.

Как бы ни были хороши эти радиодетали, но у них есть и недостатки, которые несколько усложняют эксплуатацию, а именно:

  • относительно высокая цена на ионисторы приводит к тому, что использование их в технике ведет к ее удорожанию. Как утверждают специалисты, в ближайшем будущем эта проблема будет решена, благодаря развитию новых технологий;
  • низкие параметры номинального напряжения устройств, решением может служить последовательное соединение нескольких элементов (принцип такой же, как при подключении нескольких батареек). В этом случае потребуется установить шунт в виде резистора на каждый компонент;
  • превышение температурного режима (нагрев более 70С°) становится причиной выхода из строя;
  • данный тип радиодеталей не позволяет накапливать достаточно энергии, помимо этого они обладают небольшой энергетической плотностью (то есть не столь мощные, как аккумуляторы), что несколько сужает сферу их применения. Параллельное подключение нескольких элементов позволяет частично справиться с этой проблемой.

Отдельно следует заметить, что суперконденсаторы относятся к элементам, подключение которых требует, чтобы была соблюдена полярность. Нельзя допускать короткое замыкание устройства, поскольку оно станет причиной, из-за которой повысится температура, и радиоэлементу потребуется замена.

Разница между пусковым и рабочим конденсаторами

Чтобы лучше понимать, для чего нужен пусковой конденсатор, каковы особенности их применения, нужно знать об их различиях. Основными являются следующие:

  • У них различное место установки. Рабочий является частью цепи рабочих обмоток двигателя. Пусковой представляет собой часть цепи запуска мотора.
  • Конденсаторы различаются тем, когда именно они должны работать. Пусковой включён в цепь в течение первых нескольких секунд после запуска. Затем его отключают в ручном ли автоматическом режиме. Рабочий выполняет свои функции в течение всего того времени, пока работает двигатель.
  • У каждого из них имеются свои функции. Пусковой обеспечивает сдвиг фаз между обмотками для обеспечения основного усилия при первоначальном запуске мотора. Рабочий обеспечивает вращение фаз, необходимое для нормальной работы электромотора.
  • Для каждого типа конденсаторов различаются требования по рабочему напряжению. Пусковой должен быть рассчитан на такое, которое превышает питающее в 2-3 раза. Рабочий должен быть рассчитан на такое, которое больше поступающего в 1,15 раза.

В обоих случаях чаще всего используют конденсаторы типов МБГО, МБГЧ.

Характеристика устройства

Напоследок мы скажем еще несколько слов о самом трансформаторе Теслы: для первичной обмотки вы вряд ли сможете отыскать медный провод нужного диаметра, так что проще использовать медные трубки от холодильного оборудования. Число витков – от семи до девяти. На «вторичку» нужно намотать не менее 400 (до 800) витков. Точное количество определить невозможно, так что придется ставить опыты. Один выход подключается к ТОРу (излучателю молний), а второй очень (!) надежно заземляется.

Из чего сделать излучатель? Используйте для этого обыкновенную вентиляционную гофру. Перед тем как сделать катушку Тесла, фото которой есть здесь же, обязательно подумайте, как сконструировать ее более оригинальной. Ниже есть несколько советов.

Digitrode

Если вы заядлый радиолюбитель и любите собирать радиоприемники, то, наверное, могли заметить, что у поставщиков электронных компонентов ассортимент настроечных конденсаторов переменной емкости несколько поубавился. Было время, когда почти в каждом радиоприемнике имелся хотя бы один подстроечный конденсатор, но теперь с появлением варикапа и синтезатора частот такой конденсатор настройки антенного контура является редкостью. Они все еще производятся, но стоят не дешево, и они не будут появляться в вашем ящике для компонентов также быстро, как это было раньше.

К счастью, конденсатор переменной емкости представляет собой удивительно простое устройство. Причем вы можете сделать его самостоятельно, по крайней мере, конденсатор емкостью в несколько десятков пикофарад собирается из подручных материалов.

Для сборки самодельного конденсатора вам понадобятся болт, пара гаек, кусок медной проволоки с покрытием (длина 30 см, калибр AWG22, т.е. диаметр 0.64 мм) и маленький кусочек текстолита.

Для начала накрутите гайки на болт и нанесите на одну из граней каждой гайки олово, затем припаяйте данный болт с гайками к куску медного текстолита, как показано на рисунках ниже.

Болт желательно брать длиной 16 мм. Если такового под рукой не оказалось, то можно взять длиннее, но придется обрезать его до длины. Теперь обмотайте край болта медной проволокой. Сделайте 12 колец, после двенадцатого оборота отрежьте лишние концы проволоки, оставив примерно по 12-15 мм с каждой стороны.

На рисунке ниже показан предпоследний шаг. На этом этапе нужно сделать меленькую пластмассовую прокладку и поместить ее между гайками. Это необходимо для надежной фиксации конструкции при вращении болта во время настройки такого самодельного конденсатора. Кусок такой пластмассы может быть от чего угодно и любого типа пластика. В данном случае использовался кусок пластиковой трубы.

На заключительном этапе нужно просто согнуть внешний конец провода катушки по направлению к внутреннему концу, затем срежьте излишки. Далее возьмите нож или другое лезвие и снимите эмаль с конца провода. В конечном итоге возьмите отрезанный кусок провода, зачистите его весь и припаяйте его к куску текстолита между двумя гайками. Сделайте так, чтобы оба конца катушки имели длину около 12-15 мм. Теперь вы можете подключать этими концами ваш самодельный настроечный конденсатор переменной емкости к вашему радиоприемнику.

Провод, припаянный к печатной плате, действует в качестве ротора, а провод, идущий от катушки, действует в качестве статора. С помощью такого конденсатора можно получать емкость от 5 до 27 пФ.

digitrode.ru

Принцип работы

Сегодня многие домашние электрики пытаются собрать КТ, при этом не всегда понимая принцип работы трансформатора Тесла, из-за чего терпят фиаско. На самом деле КТ недалеко ушла от обычного трансформатора.

Есть две обмотки – первичная и вторичная. Когда к первичной обмотке подводят переменное напряжение от внешнего источника, вокруг нее создается магнитное поле или, как его еще называют, колебательный контур. Когда заряд пробьет разрядник, через магнитное поле энергия начнет перетекать к вторичной обмотке, где будет образовываться второй колебательный контур. Часть накапливаемой в контуре энергии будет представлена напряжением. Ее величина будет прямо пропорциональна времени образования контура.

Таким образом, в КТ имеется два связанных между собой колебательных контура, что и является определяющей характеристикой при сравнении с обычными трансформаторами. Их взаимодействие создает ионизирующий эффект, из-за чего мы видим стримеры (разряды молний).

Немного теории

О нужно знать несколько вещей. Наиболее важные из них касаются зарядки, разрядки и подключения: последовательного и параллельного.

Зарядка суперконденсатора

Начнем с постоянной времени RC-цепи:

За время t суперконденсатор емкостью С, подключенный последовательно с резистором R, зарядится примерно до 2/3 (точнее до 63,2%) напряжения питания. За время 5t суперконденсатор зарядится до значения очень близкое к напряжению питания (99,3%).

Эти интервалы обусловлены тем, что процесс зарядки конденсатора является не линейной функцией (экспоненциальной). Для определения его параметров можно использовать следующие формулы:

В приведенных выше формулах:

Обратите внимание, что:

Практический пример: зарядка суперконденсатора емкостью 1Ф через резистор сопротивлением 50 Ом от источника напряжения 5 В (зафиксированного на осциллографе):

На рисунке видно, что суперконденсатор достиг заряда 63,2% (3,16 В) примерно за 47 секунд. Это согласуется (более менее) с постоянной времени:

t = 50 Ом * 1 Ф = 50 сек

цифровая электроника вычислительная техника встраиваемые системы

Делаем простой настроечный конденсатор для УКВ своими руками

Если вы заядлый радиолюбитель и любите собирать радиоприемники, то, наверное, могли заметить, что у поставщиков электронных компонентов ассортимент настроечных конденсаторов переменной емкости несколько поубавился. Было время, когда почти в каждом радиоприемнике имелся хотя бы один подстроечный конденсатор, но теперь с появлением варикапа и синтезатора частот такой конденсатор настройки антенного контура является редкостью. Они все еще производятся, но стоят не дешево, и они не будут появляться в вашем ящике для компонентов также быстро, как это было раньше.

К счастью, конденсатор переменной емкости представляет собой удивительно простое устройство. Причем вы можете сделать его самостоятельно, по крайней мере, конденсатор емкостью в несколько десятков пикофарад собирается из подручных материалов.

Для сборки самодельного конденсатора вам понадобятся болт, пара гаек, кусок медной проволоки с покрытием (длина 30 см, калибр AWG22, т.е. диаметр 0.64 мм) и маленький кусочек текстолита.

Для начала накрутите гайки на болт и нанесите на одну из граней каждой гайки олово, затем припаяйте данный болт с гайками к куску медного текстолита, как показано на рисунках ниже.

Болт желательно брать длиной 16 мм. Если такового под рукой не оказалось, то можно взять длиннее, но придется обрезать его до длины. Теперь обмотайте край болта медной проволокой. Сделайте 12 колец, после двенадцатого оборота отрежьте лишние концы проволоки, оставив примерно по 12-15 мм с каждой стороны.

На рисунке ниже показан предпоследний шаг. На этом этапе нужно сделать меленькую пластмассовую прокладку и поместить ее между гайками. Это необходимо для надежной фиксации конструкции при вращении болта во время настройки такого самодельного конденсатора. Кусок такой пластмассы может быть от чего угодно и любого типа пластика. В данном случае использовался кусок пластиковой трубы.

Провод, припаянный к печатной плате, действует в качестве ротора, а провод, идущий от катушки, действует в качестве статора. С помощью такого конденсатора можно получать емкость от 5 до 27 пФ.

Источник

III. ВМЕСТО ЗАКЛЮЧЕНИЯ. БЕЗОПАСНОСТЬ

Сказать, что такой конденсатор опасен — это ничего не сказать. Электрический
удар от такой емкости также смертелен, как КАМАЗ, летящий на Вас со скоростью
160 км/ч. Относиться к этому конденсатору нужно с таким же уважением, как к
оружию или взывчатке. При работе с такими конденсаторами применяйте все возможные
меры безопасности и, в частности дистанционное включение и выключение.
Предугадать все опасные ситуации и дать рекомендации, как в них не попасть,
попросту невозможно. Будьте осторожны и думайте головой. Знаете, когда кончается
карьера сапера? Когда он перестает бояться. Именно в тот самый момент, когда он
становится «на ты» с взрывчаткой, ему сносит бошку.
С другой стороны миллионы людей ездят по дорогам с КАМАЗами и тысячи саперов
ходят на работу и остаются живы. Пока Вы осторожны и думаете головой, все будет
в порядке.

Схемы подключения при рабочем напряжении в 380 В

Выпускаемые промышленностью асинхронные трехфазные двигатели возможно подключить двумя основными способами:

Электродвигатели конструктивно выполняются из подвижного ротора и корпуса, в который вставлен находящийся неподвижно статор (может быть собран непосредственно в корпусе или вставляться туда). Статор имеет в своем составе 3 равнозначные обмотки, специальным образом намотанные и расположенные на нем.

При соединении «звездой» концы всех трех обмоток двигателя соединяются вместе, а к их началам подаются три фазы. При соединении обмоток «треугольником» конец одной соединяется с началом следующей.


Соединение треугольник и звезда.

Использование асинхронных двигателей

Трёхфазные и однофазные двигатели асинхронного типа активно используются в различных отраслях хозяйства. Для этого имеется несколько причин:

  • Простота конструкции.
  • Надёжность и долговечность при использовании.
  • Для того чтобы запустить мотор, нет необходимости использовать дорогие и дефицитные устройства.
  • Мотор не требует слишком частого проведения технического обслуживания.

По внешнему виду можно легко отличить трёхфазные двигатели от однофазных. У первых всегда имеется 6 клемм, а у вторых их количество равно двум или четырём.

У трёхфазных моторов обмотки подключаются двумя способами: звездой или треугольником. Они предполагают использование напряжения, составляющего 380 вольт. Однако в быту оно применяется редко. Чтобы использовать такой мотор, нужно знать, как его правильно подключать.

Это делают с использованием фазосдвигающего конденсатора. Это позволит использовать трёхфазные двигатели при подключении к однофазной сети. В этом случае мощность мотора будет равна 50%-60% от номинальной.

Проверка пускового конденсатораИсточник antemion.ru

Оптимальность работы трёхфазного двигателя обеспечивается при условии применения переменной ёмкости. Чтобы так сделать, на первом этапе применяют рабочий и пусковой конденсаторы, а на втором — только первый из них.

В быту часто применяются асинхронные однофазные двигатели. Для запуска обычно требуется дополнительная обмотка.

При выборе ёмкости конденсатора необходимо учитывать то, как зависит от неё величина пускового момента. При увеличении этой характеристики, происходит увеличение усилия. При определённом значении оно становится максимальным. После дальнейшего увеличения пусковой момент станет падать.

Расчёт параметров конденсатораИсточник ук-энерготехсервис.рф

Конденсаторная сварка: что это такое

Конденсаторная сварка своими руками была разработана еще в 30-х годах XX века. Сегодня эта технология активно используется предприятиями промышленности и умельцами с целью выполнения бытовых сварных операций.

Особенно популярна такая технология в цехах ремонта кузовов транспортных средств: в отличие от дугового, при конденсаторном методе создания сварного шва не происходит прожигание и деформация тонких стенок листов кузовных деталей. В последующее время соединенным деталям кузова не нужна дополнительная рихтовка.

Такую технологию применяют в радиоэлектронике для соединения изделий, не паяющихся посредством обычных флюсов или выходящих из строя при перегреве.

Активно применяются аппараты конденсаторной сварки ювелирами при изготовлении и ремонте ювелирных украшений, на предприятиях, выпускающих коммуникационные шкафы, лабораторное, медицинское, пищевое оборудование, при строительстве зданий, мостов, инженерных коммуникаций.

Столь широкое распространение можно объяснить действием ряда факторов:

простая конструкция сварочного аппарата, который при желании можно собрать своими руками;
точечная сварка отличается относительно низкой энергоемкостью и малыми нагрузками, создаваемыми на электрическую сеть;
высокие показатели производительности, что крайне важно при серийном производстве;
возможность снизить термическое влияние на соединяемые поверхности, что позволяет сваривать детали малых размеров и работать с теми конструкциями, стенки которых чрезмерно тонки и могут деформироваться при обычной сварке.

На заметку! Достоинством технологии конденсаторной сварки является простота ее реализации: даже средний уровень квалификации позволяет мастеру создать качественные сварные швы.

Способ конденсаторной сварки изделия.

Правила осуществления сварных операций с помощью энергии конденсаторов регламентируются ГОСТ. Принцип технологии основывается на трансформации энергии электрического заряда, накопленного на конденсаторах, в тепловую энергию.

При соприкосновении электродов происходит разряд и образуется электрическая дуга краткого действия. За счёт выделяемого ею тепла кромки соединяемых деталей из металла плавятся, образуя сварной шов.

При конденсаторной сварке ток подается на сварной электрод в виде кратковременного импульса высокой мощности, который получается за счет монтажа в оборудование конденсаторов большой емкости.

В случае использования контактной сварки ток непрерывен. В этом заключается основное отличие этих видов выполнения сварных операций.

В итоге, мастер может достичь высоких показателей двух важных параметров:

  • на термический нагрев соединяемых деталей требуется гораздо меньше времени, что особенно ценно для производителей электронных компонентов;
  • ток, используемый для соединения деталей, обладает высокой мощностью, поэтому и сами сварные швы получаются более качественными.

В процессе сварных операций для крепления элементов и узлов разных изделий могут потребоваться разные по разновидности и назначению шпильки.

Также отметим, что огромным плюсом конденсаторного сварного аппарата является его компактность. Для применения такой технологии на практике не потребуется мощный источник питания, устройство можно заряжать между переносом электрода к следующей точке.

Собираем ионистр своими руками

Сборка ионистра своими руками – дело не самое простое, но в домашних условиях его сделать все же можно. Есть несколько конструкций, где присутствуют разные материалы. Предлагаем одну из них. Для этого вам понадобится:

  • металлическая баночка от кофе (50 г);
  • активированный уголь, который продается в аптеках, его можно заменить истолченными угольными электродами;
  • два круга из медной пластины;
  • вата.

В первую очередь необходимо приготовить электролит. Для этого сначала надо истолочь активированный уголь в порошок. Затем сделать солевой раствор, для чего в 100 г воды надо добавить 25 г соли, и все это хорошо перемешать. Далее, в раствор постепенно добавляется порошок активированного угля. Его количество определяет консистенция электролита, она должна быть плотностью, как замазка.

После чего готовый электролит наносится на медные круги (на одну из сторон)

Обратите внимание, чем толще слой электролита, тем больше емкость ионистра. И еще один момент, толщина наносимого электролита на двух кругах должна быть одинаковая

Итак, электроды готовы, теперь их надо разграничить материалом, который бы пропускал электрический ток, но не пропускал угольный порошок. Для этого используется обычная вата, хотя вариантов и здесь немало. Толщина ватного слоя определяет диаметр металлической баночки от кофе, то есть, вся эта электродная конструкция должна в нее спокойно поместиться. Отсюда, в принципе, и придется подбирать размеры самих электродов (медных кругов).

Остается только сами электроды подключить к выводам. Все, ионистр, изготовленный своими руками, да еще в домашних условиях, готов. У такой конструкции не очень большая емкость – не выше 0,3 фарад, да и напряжение зарядки всего лишь один вольт, но это самый настоящий ионистр.   

Электрическая емкость и ее единица измерения

Свойство проводящих тел накапливать и удерживать электрический заряд, измеряемое отношением заряда уединенного проводника к его потенциалу, называется электрической емкостью, или просто емкостью, и обозначается буквой С.

Приведенная формула электрической емкости позволяет установить единицу электрической емкости.

Практически заряд измеряется в кулонах, потенциал в вольтах, а емкость в фарадах:

Емкостью в 1 фараду обладает проводник, которому сообщают заряд в 1 кулон и при этом потенциал проводника увеличивается на 1 вольт.

Единица измерения электрической емкости – фарада (обозначается ф или F) очень велика. Поэтому чаще пользуются более мелкими единицами – микрофарадой (мкф или μF), составляющей миллионную часть фарады:

1 мкф = 10-6ф ,

и пикофарадой (пф), составляющей миллионную часть микрофарады:

1 пф = 10-6мкф = 10-12ф .

Найдем выражение практической единицы – фарады в абсолютных единицах:

Проверка исправности конденсаторов

Современные мультиметры способны измерять и проверять работоспособность любых радиодеталей. Но не всегда этот прибор есть под рукой. Проверить конденсатор можно с помощью тестера.

Мультиметр

Если мультиметр имеет специальную функцию измерения емкости, значит с его помощью можно проверить любой тип устройства. Керамические, электролитические, пусковые радиодетали имеют одинаковый принцип работы, а значит и проверка исправности может проводиться одинаково.

Для проверки необходимо:

  1. Выпаять испытуемую деталь с платы и разрядить ее, замкнув контакты.
  2. Установить мультиметр в режим определения емкости «cX».
  3. Переключить прибор на определение максимального диапазона емкости.
  4. Щупы присоединить к ножкам или выводам конденсатора.
  5. Мультиметр покажет значение емкости. Если перед значением высвечивается один или несколько «0», то прибор переключается на более низкий параметр.

Полярные конденсаторы (если правильно соблюдена полярность) показывают постепенно повышающиеся значения от «0» до «1». Если дисплей показывает «1» без изменений, значит конденсатор нерабочий. Если показания равны «0», значит элемент замкнут внутри.

Неполярные конденсаторы проверяют, выставив мультиметр на значение 2 Мом. Если показания выше этого значения, значит устройство исправно. Значения менее 2 МОм говорят о неисправности.

Тестер

Провести проверку конденсатора при помощи тестера можно только для определения общей исправности. Определить потерю емкости или разброс напряжения невозможно.

Инструкция:

  1. Для проверки необходимо установить тестер в режим сопротивления.
  2. Выпаять и разрядить проверяемый элемент.
  3. Если радиодеталь является полярной, нужно подключить клеммы тестера к выводам согласно полярности.
  4. Полярные конденсаторы (имея большую емкость) несколько секунд будут заряжаться, неполярные покажут свое значение сразу.

Полярные конденсаторы должны показать медленно нарастающее значение более 100 кОм. Если это значение ниже, конденсатор является неисправным.

Неполярные покажут значение в 1 Ом. Если значение равное «1» достигнуто мгновенно, значит конденсатор неисправен. Значение в «0» говорит о внутреннем замыкании.