Жидкокристаллический дисплей (lcd) 1602 и arduino

Оглавление

Обзор LCD 1602

Эти ЖК-дисплеи идеально подходят для отображения только текста/символов, отсюда у них есть и другое название — «символьные ЖК-дисплеи». Дисплей имеет светодиодную подсветку и может отображать 32 символа в кодировке ASCII в двух рядах по 16 символов в каждом ряду.

Если вы посмотрите внимательно, вы можете увидеть маленькие прямоугольники для каждого символа на дисплее и пиксели, которые составляют символ. Каждый из этих прямоугольников представляет собой сетку 5 × 8 пикселей.

Хотя такие дисплеи отображают только текст, они бывают разных размеров и цветов: например, 16×1, 16×4, 20×4, с белым текстом на синем фоне, с черным текстом на зеленом и другие.

Хорошая новость заключается в том, что все эти дисплеи взаимозаменяемые — если вы строите свой проект с одним из них, вы можете просто отключить его и использовать другой (размер/цвет) ЖК-дисплей на свой выбор. Возможно, придется откорректировать код  в зависимости от количества строк, но по крайней мере проводка останется той же!

7Что находится «за» шиной I2C

В качестве бонуса рассмотрим временную диаграмму вывода латинских символов «A», «B» и «С» на ЖК дисплей. Эти символы имеются в ПЗУ дисплея и выводятся на экран просто передачей дисплею их адреса. Диаграмма снята с выводов RS, RW, E, D4, D5, D6 и D7 дисплея, т.е. уже после преобразователя FC-113 «I2C параллельная шина». Можно сказать, что мы погружаемся немного «глубже» в «железо».

Временная диаграмма вывода латинских символов «A», «B» и «С» на LCD дисплей 1602

На диаграмме видно, что символы, которые имеются в ПЗУ дисплея (см. стр.11 даташита, ссылка ниже), передаются двумя полубайтами,
первый из которых определяет номер столбца таблицы, а второй – номер строки. При этом данные «защёлкиваются» по фронту сигнала на линии E (Enable), а линия RS (Register select, выбор регистра) находится в состоянии логической единицы, что означает передачу данных. Низкое состояние линии RS означает передачу инструкций, что мы и видим перед передачей каждого символа. В данном случае передаётся код инструкции возврата каретки на позицию (0, 0) ЖК дисплея, о чём также можно узнать, изучив техническое описание дисплея.

И ещё один пример. На этой временной диаграмме показан вывод символа «Сердце» на ЖК дисплей.

Временная диаграмма вывода символа «Сердце» из ПЗУ на ЖК дисплей 1602

Опять, первые два импульса Enable соответствуют инструкции Home() (0000 00102) – возврат каретки на позицию (0; 0), а вторые два – вывод на ЖК дисплей хранящийся в ячейке памяти 310 (0000 00112) символ «Сердце» (инструкция lcd.createChar(3, heart); скетча).

Библиотеки для работы с i2c LCD дисплеем

Для взаимодействие Arduino c LCD 1602 по шине I2C вам потребуются как минимум две библиотеки:

  • Библиотека Wire.h для работы с I2C уже имеется в стандартной программе Arduino IDE.
  • Библиотека LiquidCrystal_I2C.h, которая включает в себя большое разнообразие команд для управления монитором по шине I2C и позволяет сделать скетч проще и короче. Нужно дополнительно установить библиотеку После подключения дисплея нужно дополнительно установить библиотеку LiquidCrystal_I2C.h

После подключения к скетчу всех необходимых библиотек мы создаем объект и можем использовать все его функции. Для тестирования давайте загрузим следующий стандартный скетч из примера.

#include <Wire.h> 
#include <LiquidCrystal_I2C.h> // Подключение библиотеки
//#include <LiquidCrystal_PCF8574.h> // Подключение альтернативной библиотеки

LiquidCrystal_I2C lcd(0x27,16,2); // Указываем I2C адрес (наиболее распространенное значение), а также параметры экрана (в случае LCD 1602 - 2 строки по 16 символов в каждой 
//LiquidCrystal_PCF8574 lcd(0x27); // Вариант для библиотеки PCF8574 

void setup()
{
  lcd.init();                      // Инициализация дисплея  
  lcd.backlight();                 // Подключение подсветки
  lcd.setCursor(0,0);              // Установка курсора в начало первой строки
  lcd.print("Hello");       // Набор текста на первой строке
  lcd.setCursor(0,1);              // Установка курсора в начало второй строки
  lcd.print("ArduinoMaster");       // Набор текста на второй строке
}
void loop()
{
}


Описание функций и методов библиотеки LiquidCrystal_I2C:

  • home() и clear() – первая функция позволяет вернуть курсор в начало экрана, вторая тоже, но при этом удаляет все, что было на мониторе до этого.
  • write(ch) – позволяет вывести одиночный символ ch на экран.
  • cursor() и noCursor() – показывает/скрывает курсор на экране.
  • blink() и noBlink() – курсор мигает/не мигает (если до этого было включено его отображение).
  • display() и noDisplay() – позволяет подключить/отключить дисплей.
  • scrollDisplayLeft() и scrollDisplayRight() – прокручивает экран на один знак влево/вправо.
  • autoscroll() и noAutoscroll() – позволяет включить/выключить режим автопрокручивания. В этом режиме каждый новый символ записывается в одном и том же месте, вытесняя ранее написанное на экране.
  • leftToRight() и rightToLeft() – Установка направление выводимого текста – слева направо или справа налево.
  • createChar(ch, bitmap) – создает символ с кодом ch (0 – 7), используя массив битовых масок bitmap для создания черных и белых точек.

Альтернативная библиотека для работы с i2c дисплеем

В некоторых случаях при использовании указанной библиотеки с устройствами, оснащенными контроллерами PCF8574 могут возникать ошибки. В этом случае в качестве альтернативы можно предложить библиотеку LiquidCrystal_PCF8574.h. Она расширяет LiquidCrystal_I2C, поэтому проблем с ее использованием быть не должно.

Скачать библиотеку можно на нашем сайте. Библиотека также встроена в  последние версии Arduino IDE.

1Описание FC-113 преобразователя последовательного интерфейса в параллельный

  • Модуль FC-113 сделан на базе микросхемы PCF8574T, которая представляет собой 8-битный сдвиговый регистр – «расширитель» входов-выходов для последовательной шины I2C. На рисунке микросхема обозначена DD1.
  • R1 – подстроечный резистор для регулировки контрастности ЖК дисплея.
  • Джампер J1 используется для включения подсветки дисплея.
  • Выводы 1…16 служат для подключения модуля к выводам LCD дисплея.
  • Контактные площадки А1…А3 нужны для изменения адреса I2C устройства. Запаивая соответствующие перемычки, можно менять адрес устройства. В таблице приведено соответствие адресов и перемычек: «0» соответствует разрыву цепи, «1» – установленной перемычке. По умолчанию все 3 перемычки разомкнуты и адрес устройства 0x27.

I2C модуль FC-113 для подключения ЖК экрана

How To Program For LCD

#include <LiquidCrystal.h>

Define which Arduino’s pin connected to six LCD’s pins: RS, EN, D4, D4, D6, D7

const int RS = 11, EN = 12, D4 = 2, D5 = 3, D6 = 4, D7 = 5;

One of the advantages of the library is that Arduino’s pin connected to LCD is settable. This makes it flexible when you connect Arduino with LCD and other sensors/actuators.

Declare a LiquidCrystal object:

LiquidCrystal lcd(RS, EN, D4, D5, D6, D7);

Set up the LCD’s number of columns and rows.

lcd.begin(16, 2);

Move cursor to the desired position (column_index, row_index)

lcd.setCursor(column_index, row_index);

Print a message to the LCD.

lcd.print(«Hello World!»);

There are many things more that we can do with LCD (see Do More with LCD part)

OLED I2C 128 x 64 px – схема подключения к Arduino

В небольших устройствах тоже бывает нужно вывести какую-либо полезную информацию, сохраняя компактные габариты.

Обычные экраны, вроде Nokia 3310, не обеспечивают достаточного разрешения, к тому же их не видно в темноте.

В различных плеерах, электронных сигаретах и прочем давно уже используют компактные OLED-дисплеи с большим для их габаритов разрешением – так чем наши проекты хуже?

Важным плюсом OLED-экранов является работа без подсветки – каждый пиксель – сам себе подсветка. За счёт такой системы, экран потребляет крайне мало тока (фактически, его можно запитать от пина Arduino). Есть и один минус – при постоянном использовании отдельные пиксели начинают выгорать и терять яркость, но до наступления этого состояния вы успеете отладить и вывести всё, что только можно.

Дисплей подключается по высокоскоростному интерфейсу I2C (относительно высокоскоростному – до 400Кбод) и использует всего 2 сигнальных провода. Это ещё один неоспоримый плюс! Несмотря на то, что интерфейс последовательный, да ещё и данные в обе стороны идут по одной линии, на рядовой Arduino можно достичь порядка 15-20fps, чего более чем достаточно для проектов.

Стоит заметить, что дисплей монохромный – цветные картинки на него не выведешь, а для текста или графика хватит и двух цветов.

Всего у дисплея 4 пина – VCC, GND, SDA, SCL. VCC и GND подключаются к VCC и GND Arduino соответственно (чтобы перестраховаться, лучше питать дисплей от пина 3.3В – не на всех модулях стоят понижающие преобразователи), а линии данных находятся у каждой версии Arduino на разных пинах. У Uno (Nano, Pro Mini и других платах на ATMega328/168) SDA – A4, SCL – A5. У Mega – SDA – 20, SCL – 21.

На платах 3 ревизии контакты интерфейса выведены перед 13 пином на гребёнке и подписаны соответственно.

Для экрана написано множество библиотек, его поддерживает в том числе и универсальная U8g2.
Для управления дисплеем нам потребуются две библиотеки:

1) Adafruit_GFX_Library — мы её уже ставили, когда подключали Nokia 5110

2) Adafruit_SSD1306 — библиотека для управления именно OLED дисплеями

Устанавливаем обе библиотеки в Arduino IDE, и пробуем вывести наш любимый «Hello world!»:

Схема подключения OLED 128 x 64 к Arduino #include «SPI.h»
#include «Wire.h»
#include «Adafruit_GFX.h»
#include «Adafruit_SSD1306.h»
#define OLED_MOSI 9
#define OLED_CLK 10
#define OLED_DC 11
#define OLED_CS 12
#define OLED_RESET 13

Adafruit_SSD1306 display(OLED_MOSI, OLED_CLK, OLED_DC, OLED_RESET, OLED_CS);

void setup() {
// инициализация и очистка дисплея
display.begin(SSD1306_SWITCHCAPVCC);
display.clearDisplay();
display.display();

delay(1000);
display.setTextSize(1); // установка размера шрифта
display.setTextColor(WHITE); // установка цвета текста
display.setCursor(0,0); // установка курсора

display.println(«Hello, world!»);
display.display();
}

void loop() {
}

#include «Adafruit_GFX.h»#include «Adafruit_SSD1306.h»Adafruit_SSD1306 display(OLED_MOSI, OLED_CLK, OLED_DC, OLED_RESET, OLED_CS);// инициализация и очистка дисплеяdisplay.begin(SSD1306_SWITCHCAPVCC);display.setTextSize(1); // установка размера шрифтаdisplay.setTextColor(WHITE); // установка цвета текстаdisplay.setCursor(0,0); // установка курсораdisplay.println(«Hello, world!»);

Ответить

Распиновка 16х02 символов

Перед тем, приступить к сборке и написанию кода, давайте сначала взглянем на распиновку LCD 1602.

Hantek 2000 — осциллограф 3 в 1
Портативный USB осциллограф, 2 канала, 40 МГц….

Подробнее

  • GND — должен быть подключен к земле Arduino.
  • VCC — это вывод питание для ЖК-дисплея, к которому мы подключаем 5-вольтовый контакт Arduino.
  • Vo (LCD Contrast) — вывод контролирует контрастность и яркость ЖК-дисплея. Используя простой делитель напряжения с потенциометром, мы можем точно отрегулировать контрастность.
  • RS (Register Select) — этот вывод позволяет Arduino сообщать ЖК-дисплею, отправляются команды или данные. В основном этот вывод используется для дифференциации команд от данных. Например, когда на выводе RS установлено значение LOW, мы отправляем команды на ЖК-дисплей (например, установить курсор в определенном месте, очистить дисплей, сдвинуть дисплей вправо и т. д.). Когда вывод RS установлено значение  HIGH, мы отправляем данные/символы на ЖК-дисплей.
  • R/W (Read/Write) — вывод предназначен для контроля того, что необходимо сделать — считать данные или передать их на ЖК-дисплй. Поскольку мы просто используем этот ЖК-дисплей в качестве устройства вывода, то достаточно на этот вывод подать HIGH уровень, тем самым мы перейдем в режим записи.
  • EN (Enable) — вывод используется для включения дисплея. Это означает, что когда на этом выводе  установлено значение LOW ЖК-дисплей не реагирует на то, что происходит с R/W, RS и линиями шины данных. Когда же на этом выводе HIGH ЖК-дисплей обрабатывает входящие данные.
  • D0-D7 (Data Bus) — это выводы, по которым передаются 8-битные данные на дисплей. Например, если мы хотим отобразить символ «A» в верхнем регистре, мы отправляем на LCD дисплей 0100 0001 (в соответствии с таблицей ASCII) .
  • AK (Anode & Cathode) используются для управления подсветкой LCD дисплея.

Работа схемы

Схема устройства представлена на следующем рисунке.

В ЖК дисплее 16×2 если мы хотим задействовать подсветку, то нам будут нужны все его 16 контактов, в противном случае нам будет достаточно 14 контактов. 2 контакта, отвечающие за подсветку (Backlight), можно оставить неиспользованными. Среди оставшихся 14 контактов мы имеем 8 контактов данных (7-14 или D0-D7), 2 контакта для подачи питания (1&2 или VSS&VDD или GND&+5v), 3-й контакт для управления контрастностью (определяет насколько «жирными» будут выглядеть символы на экране дисплея) и 3 управляющих контакта (RS&RW&E).

На представленной схеме можно увидеть, что мы использовали только 2 управляющих контакта – это обеспечивает гибкость в управлении. Бит контраста и READ/WRITE используются редко, поэтому в нашем случае их можно замкнуть на землю – это обеспечивает ЖК дисплею максимальную контрастность и режим чтения. Таким образом, нам необходимо будет контролировать только контакты ENABLE и RS чтобы передавать на ЖК дисплей символы и данные.

В схеме необходимо будет сделать следующие соединения с ЖК дисплеем:
PIN1 или VSS на землю
PIN2 или VDD или VCC к источнику питания +5В
PIN3 или VEE на землю (обеспечивает максимальную контрастность – хорошо для начинающих)
PIN4 или RS (Register Selection) к контакту PIN0 ARDUINO UNO
PIN5 или RW (Read/Write) на землю (переводит ЖК дисплей в режим чтения, что упрощает взаимодействие с ним для начинающих)
PIN6 или E (Enable) к контакту PIN1 of ARDUINO UNO
PIN11 или D4 к контакту PIN8 of ARDUINO UNO
PIN12 или D5 к контакту PIN9 of ARDUINO UNO
PIN13 или D6 к контакту PIN10 of ARDUINO UNO
PIN14 или D7 к контакту PIN11 of ARDUINO UNO

Программная среда ARDUINO IDE позволяет пользователю использовать ЖК дисплей в 4-битном режиме. Этот тип взаимодействия с ЖК дисплеем позволяет сократить использование контактов ARDUINO, к тому же этот режим взаимодействия (4-битный) по умолчанию заложен в ARDUINO. На представленной схеме мы использовали 4-битный режим взаимодействия (контакты D4-D7).

То есть в сумме мы подсоединили 6 контактов ЖК дисплея к нашей плате Arduino, из которых 4 контакта будут использоваться для передачи данных и 2 контакта для целей управления.

Суть соединения дисплея с ардуино

Большинству созданных с Ардуино проектов не обойтись без дисплея. Это подтверждает и перечень лучших проектов. Практически все из них имеют OLED дисплей Arduino, который делает результат более читаемым. Задача дисплея в том, чтобы отображать несложную информацию. Источником информации может быть датчик, небольшой контроллер и т.п. Как пример приводим лишь несколько возможных применений:

  • Датчик температуры
  • Спидометр
  • Часы
  • И многое другое…

Стоит учесть, что дисплей ардуино бывает двух разных типов – символьный и графический. Помимо этого, дисплеи делятся также и по цвету дисплея (что влияет только на визуальный вид проекта), так и на размер экрана. Понятно, что LCD дисплей Arduino большего размера сможет вывести больше полезной информации. Для взаимодействия контроллеров с дисплеем используются четыре канала. Еще отдельная линия используется для питания подсветки, которая идет от микроконтроллера. Сенсорный дисплей имеет также возможность изменять контрастность. Для динамической подсветки монитора используется потенциометр.

Программа для Arduino IDE – отображение надписи на дисплее 1602A

Представленный ниже кусок кода достаточно скопипастить в Arduino IDE и загрузить на плату:

#include &ltLiquidCrystal.h&gt

LiquidCrystal lcd(7, 8, 9, 10, 11 , 12);

void setup() {

lcd.begin(16, 2);

lcd.setCursor(0,1);

lcd.write(«LIGHT: «);

}

void loop() { }

После загрузки программы на плату, на дисплее во второй строке отобразится следующая надпись:

Своеобразный «hello world!» на LCD 1602A запущен. Я вас поздравляю.

Подключаем фоторезистор и заливаем всю программу в Arduino

Теперь подключим фоторезистор. Подключите три провода к свободным рельсам на макетной плате (условно пронумеруем их 1, 2, 3). Оставьте в рельсах немного места для самого датчика освещенности и резистора.

Рельсу GND с макетной платы подключаем к рельсе 1. A0 (аналоговый вход) с Arduino — к рельсе 2. 5 вольт с макетной платы — к рельсе 3.

Дальше подключаем наш датчик и резистор к подготовленным рельсам

Какие именно ноги идут к земле, а какие — к питанию для нашего датчика освещенности и резистора неважно (в отличие от, например, светодиода, в котором есть катод и анод). Так что тут не перепутаете

Датчик освещенности подключаем к рельсе 1 и рельсе 2. Резистор – к рельсе 2 и к рельсе 3.

Теперь вернемся к нашей программе и добавим несколько строк в пустующее пока что тело функции loop():

void loop() {

int sensorValue = analogRead(A0);

lcd.setCursor(7,1);

lcd.print(sensorValue);

delay(100);

}

После заливки на Arduino окончательной версии нашей программы, на дисплее будут отображаться текущие значения уровня освещенности.

Подключение LCD keypad shield к Arduino

Необходимые детали:
► Arduino UNO R3 x 1 шт.
► LCD модуль keypad (LCD1602, 2×16, 5V)
► Кабель USB 2.0 A-B x 1 шт.

Подключение
Установите модуль на плату Arduino UNO, подключите кабель и закрущите данный скетч.

/*
Тестирование производилось на Arduino IDE 1.6.12
Дата тестирования 06.12.2016г.
*/

#include <LiquidCrystal.h> // Подключяем библиотеку
LiquidCrystal lcd( 8, 9, 4, 5, 6, 7 ); // Указываем порты

void setup()
{
lcd.begin(16, 2); // Инициализируем LCD 16×2
lcd.setCursor(0,0); // Установить курсор на первую строку
lcd.print(«LCD1602»); // Вывести текст
lcd.setCursor(0,1); // Установить курсор на вторую строку
lcd.print(«www.robotchip.ru»); // Вывести текст
Serial.begin(9600); // Включаем последовательный порт
}

void loop() {
int x; // Создаем переменную x
x = analogRead (0); // Задаем номер порта с которого производим считывание
lcd.setCursor(10,1); // Установить курсор на вторую строку
if (x < 100) { // Если x меньше 100 перейти на следующею строк
lcd.print («Right «); // Вывести текст
Serial.print(«Value A0 ‘Right’ is :»); // Вывести текст
Serial.println(x,DEC); // Вывести значение переменной x
}
else if (x < 200) { // Если х меньше 200 перейти на следующию строку
lcd.print («Up «); // Вывести текст
Serial.print(«Value A0 ‘UP’ is :»); // Вывести текст
Serial.println(x,DEC); // Вывести значение переменной x
}
else if (x < 400){ // Если х меньше 400 перейти на следующию строку
lcd.print («Down «); // Вывести текст
Serial.print(«Value A0 ‘Down’ is :»); // Вывести текст
Serial.println(x,DEC); // Вывести значение переменной x
}
else if (x < 600){ // Если х меньше 600 перейти на следующию строку
lcd.print («Left «); // Вывести текст
Serial.print(«Value A0 ‘Left’ is :»); // Вывести текст
Serial.println(x,DEC); // Вывести значение переменной x
}
else if (x < 800){ // Если х меньше 800 перейти на следующию строку
lcd.print («Select»); // Вывести текст
Serial.print(«Value A0 ‘Select’ is :»);// Вывести текст
Serial.println(x,DEC); // Вывести значение переменной x
}
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

/*
  Тестирование производилось на Arduino IDE 1.6.12
  Дата тестирования 06.12.2016г.

*/

 
#include <LiquidCrystal.h>                // Подключяем библиотеку

LiquidCrystal lcd(8,9,4,5,6,7);// Указываем порты        

voidsetup()

{

lcd.begin(16,2);// Инициализируем LCD 16×2  

lcd.setCursor(,);// Установить курсор на первую строку  

lcd.print(«LCD1602»);// Вывести текст

lcd.setCursor(,1);// Установить курсор на вторую строку

lcd.print(«www.robotchip.ru»);// Вывести текст

Serial.begin(9600);// Включаем последовательный порт

}
 

voidloop(){

intx;// Создаем переменную x

x=analogRead();// Задаем номер порта с которого производим считывание

lcd.setCursor(10,1);// Установить курсор на вторую строку

if(x<100){// Если x меньше 100 перейти на следующею строк

lcd.print(«Right «);// Вывести текст

Serial.print(«Value A0 ‘Right’ is  :»);// Вывести текст

Serial.println(x,DEC);// Вывести значение переменной x

}

elseif(x<200){// Если х меньше 200 перейти на следующию строку

lcd.print(«Up    «);// Вывести текст

Serial.print(«Value A0 ‘UP’ is  :»);// Вывести текст

Serial.println(x,DEC);// Вывести значение переменной x

}

elseif(x<400){// Если х меньше 400 перейти на следующию строку

lcd.print(«Down  «);// Вывести текст

Serial.print(«Value A0 ‘Down’ is  :»);// Вывести текст

Serial.println(x,DEC);// Вывести значение переменной x

}

elseif(x<600){// Если х меньше 600 перейти на следующию строку

lcd.print(«Left  «);// Вывести текст

Serial.print(«Value A0 ‘Left’ is  :»);// Вывести текст

Serial.println(x,DEC);// Вывести значение переменной x

}

elseif(x<800){// Если х меньше 800 перейти на следующию строку

lcd.print(«Select»);// Вывести текст

Serial.print(«Value A0 ‘Select’ is  :»);// Вывести текст

Serial.println(x,DEC);// Вывести значение переменной x

}
}

После загрузки прошивки, плата перегрузится и отобразится надпись, нажмите любую кнопку и информация о нажатой кнопке отобразится на дисплеи и в мониторинге порта.

Ссылки  Документация к LCD1602A  Документация к LCD ZYMC1602  Документация к HD44780U

Купить на Aliexpress  Контроллер Arduino UNO R3 на CH340G  Контроллер Arduino UNO R3 на Atmega16U2  Провода DuPont, 2,54 мм, 20 см  LCD модуля keypad (LCD1602, 2×16, 5V)

Купить в Самаре и области  Контроллер Arduino UNO R3 на CH340G  Контроллер Arduino UNO R3 на Atmega16U2  Провода DuPont, 2,54 мм, 20 см   LCD модуля keypad (LCD1602, 2×16, 5V)

Скетч для экрана на Arduino LCD shield

Для работы с LCD экранами обычно используют популярную библиотеку LiquidCrystal . На этапе инициализации создается объект класса LiquidCrystal, в конструкторе которого мы указываем пины с подключенными контактами экрана. Для нашего шилда требуется использовать такой вариант: LiquidCrystal lcd(8, 9, 4, 5, 6, 7); Последовательность аргументов конструктора:

  • RS (8)
  • Enable (9)
  • data(4)
  • data(5)
  • data(6)
  • data(7)

Ничего сложного в работе с объектом нет. В setup() мы инициализируем объект, указывая ему количество символов и строк:


lcd.begin(16, 2);

Для вывода информации на дисплей используем метод print():


lcd.print (“Arduino Master!”);

Текст выведется в место текущего нахождения курсора (в начале работы скетча это первая строка и первый символ). Для указания произвольного положения курсора можно использовать функцию setCursor(<столбец>, <строка>):


lcd.setCursor(0, 0); // Первый символ первой строки

lcd.setCursor(0, 1); // Первый символ второй строки

lcd.setCursor(2, 1); // Третий символ второй строки

Модуль i2c для работы с LCD 1602

Этот интерфейсный модуль позволяет уменьшить количество используемых выводов контроллера, вместо 8 или 4-битного соединения, требуется только 2 вывода (SDA и SCL).

  • поддержка дисплеев: LCD 16×02 / 20×04;
  • дополнительно: регулировка контрастности;
  • напряжение питания. 5 В;
  • интерфейс: I2C;
  • размеры модуля: 54 мм x 19 мм x 15 мм

Внешний вид интерфейсного модуля i2c

Для соединения на модуле расположено три группы контактов:

Первая группа:

  • SCL:    линия тактирования (Serial CLock)
  • SDA:   линия данных (Serial Dфta)
  • VCC:   «+» питание
  • GND:  «-» питание

Вторая группа:

  • VSS:   «-» питание
  • VDD:  «+» питание
  • VO:    Вывод управления контрастом
  • RS:     Выбор регистра
  • RW:   Чтение/запись ( режим записи при соединении с землей)
  • E:       Еnable (строб по спаду)
  • DB0-DB3: биты интерфейса (младшие )
  • DB4-DB7: биты интерфейса (старшие)
  • A:      «+» питания подсветки
  • K:      «-»  питания подсветки

Третья группа: (по умолчанию установлена перемычка)

  • VCC:
  • A от LCD:

Библиотека RTC.h Arduino: описание команд

Для работы с модулями часов Ардуино, в библиотеке реализовано 5 функций:

// запуск модуля

// указать время
— год указывается без учета века, в формате 0-99
— часы указываются в 24-часовом формате, от 0 до 23
— день недели указывается в виде числа от 0-воскресенье, 6-суббота

// получить время
— gettime(«d-m-Y, H:i:s, D»); ответит строкой «12-06-2020, 18:30:05, Fri»
— gettime(«H»); ответит строкой «18»

функцией gettime можно получать различную информацию:

  • s — секунды от 00 до 59 (два знака)
  • i — минуты от 00 до 59 (два знака)
  • h — часы в 12-часовом формате от 01 до 12 (два знака)
  • H — часы в 24-часовом формате от 00 до 23 (два знака)
  • d — день месяца от 01 до 31 (два знака)
  • D — день недели наименование от Mon до Sun (три знака)
  • m — месяц от 01 до 12 (два знака)
  • M — месяц наименование от Jan до Dec (три знака)
  • Y — год от 2000 до 2099 (четыре знака)
  • y — год от 00 до 99 (два знака)

— указывает функции gettime мигать одним из параметров времени

— устанавливает период обращения к модулю в минутах (от 0 до 255)

Программный код

Если для работы с дисплеем без модуля необходимо было воспользоваться только одной библиотекой, то для работы с модулем нужно две библиотеки. Одна из них уже есть в составе Arduino IDE — Wire. Другую библиотеку, LiquidCrystal I2C, надо скачивать отдельно и устанавливать. Для установки библиотеки в Arduino содержимое скачанного архива необходимо загрузить в корневую папку Libraries. Пример программного кода с использованием I2C:

#include
#include
LiquidCrystal_I2C lcd(0x27,16,2); // Устанавливаем дисплей
void setup()
{
lcd.init();
lcd.backlight();// Включаем подсветку дисплея
lcd..setCursor(8, 1);
lcd.print(«LCD 1602»);
}
void loop()
{
// Устанавливаем курсор на вторую строку и нулевой символ.
lcd.setCursor(0, 1);
// Выводим на экран количество секунд с момента запуска ардуины
lcd.print(millis()/1000);
}

Как можно увидеть, код почти не отличается.

Подключение модуля OLED к Arduino Uno

Прежде чем мы перейдем к загрузке кода и отправке данных на дисплей, давайте подключим дисплей к Arduino Uno.

Схема подключения довольно проста. Начните с подключения контакта VCC к выходу 5V на Arduino и GND к земле

Теперь остались выводы, которые используются для связи по I2C. Обратите внимание, что каждая плата Arduino имеет разные контакты I2C

На платах Arduino с маркировкой R3 SDA (линия передачи данных) и SCL (линия синхронизации) находятся на разъемах рядом с выводом AREF. Они также известны как A5 (SCL) и A4 (SDA).

Если у вас MEGA, контакты будут другие! Используйте цифровые 21 (SCL) и 20 (SDA).

На следующей схеме показано как все должно быть подключено:

ЖК дисплей Arduino LCD 1602

LCD 1602

Краткое описание пинов LCD 1602

Давайте посмотрим на выводы LCD1602 повнимательней:

Каждый из выводов имеет свое назначение:

  1. Земля GND;
  2. Питание 5 В;
  3. Установка контрастности монитора;
  4. Команда, данные;
  5. Записывание и чтение данных;
  6. Enable;

7-14. Линии данных;

  1. Плюс подсветки;
  2. Минус подсветки.

Технические характеристики дисплея:

  • Символьный тип отображения, есть возможность загрузки символов;
  • Светодиодная подсветка;
  • Контроллер HD44780;
  • Напряжение питания 5В;
  • Формат 16х2 символов;
  • Диапазон рабочих температур от -20С до +70С, диапазон температур хранения от -30С до +80 С;
  • Угол обзора 180 градусов.

Схема подключения LCD к плате Ардуино без i2C

Стандартная схема присоединения монитора напрямую к микроконтроллеру Ардуино без I2C выглядит следующим образом.

Из-за большого количества подключаемых контактов может не хватить места для присоединения нужных элементов. Использование I2C уменьшает количество проводов до 4, а занятых пинов до 2.

Подключение LCD дисплея 1602 к плате Arduino(На примере Arduino Uno):

Для подключения LCD дисплея к плате Arduino нам потребуется подстроечный резистор на 10 кОм, подключаем все как на фото выше.Так же, опытным путем, было выявлено, что для нормального отображения достаточно резистора 2.2 кОм (в моем случае, у Вас номинал может быть другой), впаянного между контактами VSS и VO как на фото ниже: Нам необходима библиотека LiquidCrystal. Она входит в состав Arduino IDE последней версии.Скетч для проверки работы дисплея:#include <LiquidCrystal.h>  // Добавляем необходимую библиотекуLiquidCrystal lcd(12, 11, 5, 4, 3, 2); // (RS, E, DB4, DB5, DB6, DB7)void setup(){  lcd.begin(16, 2);              // Задаем размерность экрана lcd.setCursor(0, 0);           // Устанавливаем курсор в начало 1 строки lcd.print(«Hello, world!»);    // Выводим текст lcd.setCursor(0, 1);           // Устанавливаем курсор в начало 2 строки lcd.print(«systop.ru»);         // Выводим текст}void loop(){}Загружаем в нашу плату, на экране в первой строке должна отобразится надпись «Hello, world!, а во второй — “systop.ru” На этом впринципе можно сказать и все.

Примеры скетчев

Описание функций и методов библиотеки LiquidCrystal I2C:

  • home() и clear() – возврат курсора в начало экрана, вторая это очистка экрана курсор после очистки переходи в начало;
  • write(ch) – вывод символа на экран;
  • cursor() и noCursor() – показать/скрыть курсор на экране;
  • blink() и noBlink() – включение/выключение мигание курсора;
  • display() и noDisplay() – подключаем/отключаем дисплей;
  • scrollDisplayLeft() и scrollDisplayRight() – смещаем экран на один символ вправо/влево;
  • autoscroll() и noAutoscroll() – позволяет вкл./выкл. режим автопрокрутки. В этом режиме каждый новый символ записывается в одном и том же месте, вытесняя ранее написанное на экране;
  • leftToRight() и rightToLeft() – направление выводимых символов слева направо или справа налево;
  • createChar(ch, bitmap) – создание символа с кодом ch (0 – 7), для создания черных и белых точек

Подключение платы LCD Shield к Arduino

Подключение шилда очень простое – нужно попасть ножками в соответствующие разъемы платы ардуино и аккуратно совместить их. Ничего дополнительно подсоединять или припаивать не надо. Нужно помнить и учитывать тот факт, что часть пинов зарезервированы для управления дисплеем и кнопками и не может быть использована для других нужд! Для удобства подключения дополнительного оборудования на плате выведены дополнительные разъемы 5В и GND к каждой контактной площадке аналоговых пинов. Это, безусловно, упрощает работу с датчиками. Также можно подключать цифровые устройства через свободные пины 0-3 и 11-13. Подключив шилд, мы можем работать с экраном и кнопками на нем так же, как с отдельными устройствами, учитывая только номера пинов, к которым припаяны соответствующие контакты.

Необходимые компоненты

Для создания дисплея для Ардуино понадобится следующее оборудование:

  1. Микроконтроллер Ардуино или Genuino.
  2. ЖК-экран, совместимый с драйвером Hitachi HD44780.
  3. Штыревые разъемы для припаивания к выводам ЖК-дисплея.
  4. Потенциометр 10 кОм.
  5. 220 Ом резистор.
  6. Соединительные провода.
  7. Макет.

ЖК-мониторы, совместимые с Hitachi; ими можно управлять в двух режимах: 4-битном или 8-битном. Для 4-битного режима требуется семь выводов ввода/вывода от Arduino LCD, а для 8-разрядного режима требуется 11 контактов. Для отображения текста на экране вы можете делать все в 4-битном режиме, поэтому пример показывает, как управлять 2×16 ЖК-дисплеем в 4-битном режиме.

Запуск и тестирование

Попробуйте переделать код для сенсорного устройства. В принципе, для управления текстом на ЖК-дисплее есть три основные функции:

  1. begin (итоговые столбцы, общие строки). Эта функция используется внутри setup () для инициализации размера используемого дисплея. Если это 20×4, то: lcd.begin (20,4), иначе, если это 16×2, тогда: lcd.begin (16,2).
  2. setCursor (номер столбца, номер строки) – эта функция помещает курсор на устройстве в нужное положение. Любой текст, отображаемый после этой функции, начнется с указанной вами позиции. Например, используйте: lcd.setCursor (4,0), т. е. пятый столбец и первую строку (начиная с 0,0).
  3. print («текст») – эта функция используется для печати текста на ЖК-дисплее. Какая бы ни была строка внутри «», она отображается на дисплее.

Вот и все, теперь можно добавить полученное устройство к проектам.

Описание протокола I2C

Прежде чем обсуждать подключение дисплея к ардуино через i2c-переходник, давайте вкратце поговорим о самом протоколе i2C.

I2C / IIC
(Inter-Integrated Circuit) – это протокол, изначально создававшийся для связи интегральных микросхем внутри электронного устройства. Разработка принадлежит фирме Philips. В основе i2c протокола является использование 8-битной шины, которая нужна для связи блоков в управляющей электронике, и системе адресации, благодаря которой можно общаться по одним и тем же проводам с несколькими устройствами. Мы просто передаем данные то одному, то другому устройству, добавляя к пакетам данных идентификатор нужного элемента.

Самая простая схема I2C может содержать одно ведущее устройство (чаще всего это микроконтроллер Ардуино) и несколько ведомых (например, дисплей LCD). Каждое устройство имеет адрес в диапазоне от 7 до 127. Двух устройств с одинаковым адресом в одной схеме быть не должно.

Плата Arduino поддерживает i2c на аппаратном уровне. Вы можете использовать пины A4 и A5 для подключения устройств по данному протоколу.

В работе I2C можно выделить несколько преимуществ:

  • Для работы требуется всего 2 линии – SDA (линия данных) и SCL (линия синхронизации).
  • Подключение большого количества ведущих приборов.
  • Уменьшение времени разработки.
  • Для управления всем набором устройств требуется только один микроконтроллер.
  • Возможное число подключаемых микросхем к одной шине ограничивается только предельной емкостью.
  • Высокая степень сохранности данных из-за специального фильтра подавляющего всплески, встроенного в схемы.
  • Простая процедура диагностики возникающих сбоев, быстрая отладка неисправностей.
  • Шина уже интегрирована в саму Arduino, поэтому не нужно разрабатывать дополнительно шинный интерфейс.

Недостатки:

  • Существует емкостное ограничение на линии – 400 пФ.
  • Трудное программирование контроллера I2C, если на шине имеется несколько различных устройств.
  • При большом количестве устройств возникает трудности локализации сбоя, если одно из них ошибочно устанавливает состояние низкого уровня.