Оглавление
- W2 = (U2эфф*W1) / Uэфф
- Стоимость трансформатора
- Как рассчитать силовой трансформатор по формулам за 5 этапов
- Общие конструктивные схемы и классификация
- Как намотать импульсный трансформатор?
- Персональный сайт — Расчет трансформатора
- Область применения
- Рабочая частота трансформатора
- Выбор типа магнитопровода.
- Конструкция (виды) импульсных трансформаторов
- Расчет токов однофазного кз в сети 0,4 кВ
- ПОДБОР ФЕРРИТОВОГО КОЛЬЦА
W2 = (U2эфф*W1) / Uэфф
Исходя из всех выше перечисленных формул (с учетом плотности тока зависящим от мощности трансформатора) можно примерно рассчитать основные параметры импульсного трансформатора, для удобства рассчетов можно воспользоваться онлайн калькулятором.
После определения диаметра провода, следует учитывать, что диаметр провода рассчитывается без изоляции, воспользуйтесь таблицей данных обмоточных проводов для определения диаметра провода с изоляцией.
Таблица данных обмоточных проводов.
Диаметр без изоляции, мм | Сечение меди, мм² | Диаметр с изоляцией, мм |
0,03 | 0,0007 | 0,045 |
0,04 | 0,0013 | 0,055 |
0,05 | 0,002 | 0,065 |
0,06 | 0,0028 | 0,075 |
0,07 | 0,0039 | 0,085 |
0,08 | 0,005 | 0,095 |
0,09 | 0,0064 | 0,105 |
0,1 | 0,0079 | 0,12 |
0,11 | 0,0095 | 0,13 |
0,12 | 0,0113 | 0,14 |
0,13 | 0,0133 | 0,15 |
0,14 | 0,0154 | 0,16 |
0,15 | 0,0177 | 0,17 |
0,16 | 0,0201 | 0,18 |
0,17 | 0,0227 | 0,19 |
0,18 | 0,0255 | 0,2 |
0,19 | 0,0284 | 0,21 |
0,2 | 0,0314 | 0,225 |
0,21 | 0,0346 | 0,235 |
0,23 | 0,0416 | 0,255 |
0,25 | 0,0491 | 0,275 |
0,27 | 0,0573 | 0,31 |
0,29 | 0,0661 | 0,33 |
0,31 | 0,0755 | 0,35 |
0,33 | 0,0855 | 0,37 |
0,35 | 0,0962 | 0,39 |
0,38 | 0,1134 | 0,42 |
0,41 | 0,132 | 0,45 |
0,44 | 0,1521 | 0,49 |
0,47 | 0,1735 | 0,52 |
0,49 | 0,1885 | 0,54 |
0,51 | 0,2043 | 0,56 |
0,53 | 0,2206 | 0,58 |
0,55 | 0,2376 | 0,6 |
0,57 | 0,2552 | 0,62 |
0,59 | 0,2734 | 0,64 |
0,62 | 0,3019 | 0,67 |
0,64 | 0,3217 | 0,69 |
0,67 | 0,3526 | 0,72 |
0,69 | 0,3739 | 0,74 |
0,72 | 0,4072 | 0,78 |
0,74 | 0,4301 | 0,8 |
0,77 | 0,4657 | 0,83 |
0,8 | 0,5027 | 0,86 |
0,83 | 0,5411 | 0,89 |
0.86 | 0,5809 | 0,92 |
0,9 | 0,6362 | 0,96 |
0,93 | 0,6793 | 0,99 |
0,96 | 0,7238 | 1,02 |
1 | 0,7854 | 1,07 |
1,04 | 0,8495 | 1,12 |
1,08 | 0,9161 | 1,16 |
1,12 | 0,9852 | 1,2 |
1,16 | 1,057 | 1,24 |
1,2 | 1,131 | 1,28 |
1,25 | 1,227 | 1,33 |
1,3 | 1,327 | 1,38 |
1,35 | 1,431 | 1,43 |
1,4 | 1,539 | 1,48 |
1,45 | 1,651 | 1,53 |
1,5 | 1,767 | 1,58 |
1,56 | 1,911 | 1,64 |
1,62 | 2,061 | 1,71 |
1,68 | 2,217 | 1,77 |
1,74 | 2,378 | 1,83 |
1,81 | 2,573 | 1,9 |
1,88 | 2,777 | 1,97 |
1,95 | 2,987 | 2,04 |
2,02 | 3,205 | 2,12 |
2,1 | 3,464 | 2,2 |
2,26 | 4,012 | 2,36 |
Импульсные трансформаторы (ИТ) являются востребованным прибором в хозяйственной деятельности. Часто устанавливают в блоки питания бытовой, компьютерной, специальной техники. Импульсный трансформатор своими руками создают мастера с минимальным опытом работы в области радиотехники. Что это за устройство, а также принцип работы будут рассмотрены далее.
Стоимость трансформатора
Цена на единицу продукции может колебаться от 50 до 700 рублей и выше, в зависимости от характеристик устройства. При покупке учитывается производитель изделия и размер приобретаемой партии. Наиболее дешево обойдётся продукция китайского производства, массово представленная на рынке.
Импульсные трансформаторы – устройства, без которых невозможно представить современную бытовую технику и промышленное производство. Эти аппараты обладают рядом преимуществ, по сравнению с аналогичным оборудованием, но в некоторых случаях сопутствующие недостатки не позволяют их использовать.
Как рассчитать силовой трансформатор по формулам за 5 этапов
Привожу упрощенную методику, которой пользуюсь уже несколько десятков лет для создания и проверки самодельных трансформаторных устройств из железа неизвестной марки по мощности нагрузки.
По ней мне практически всегда получалось намотать схему с первой попытки. Очень редко приходилось добавлять или уменьшать некоторое количество витков.
В основу расчета положено среднее соотношение коэффициента полезного действия ŋ, как отношение электрической мощности S2, преобразованной во вторичной обмотке к приложенной полной S1 в первичной.
Потери мощности во вторичной обмотке оценивают по статистической таблице.
Мощность трансформатора, ватты | Коэффициент полезного действия ŋ |
15÷50 | 0,50÷0,80 |
50÷150 | 0,80÷0,90 |
150÷300 | 0,90÷0,93 |
300÷1000 | 0,93÷0,95 |
>1000 | 0.95÷0,98 |
Электрическая мощность устройства определяется произведением номинального тока, протекающего по первичной обмотке в амперах, на напряжение бытовой проводки в вольтах.
Она преобразуется в магнитную энергию, протекающую по сердечнику, полноценно распределяясь в нем в зависимости от формы распределения потоков:
- для кольцевой фигуры из П-образных пластин площадь поперечного сечения под катушкой магнитопровода рассчитывается как Qc=√S1;
- у сердечника из Ш-образных пластин Qc=0,7√S1.
Этап №2. Особенности вычисления коэффициента трансформации и токов внутри обмоток
Силовой трансформатор создается для преобразования электрической энергии одной величины напряжения в другое, например, U1=220 вольт на входе и U2=24 V — на выходе.
Коэффициент трансформации в приведенном примере записывается как выражение 220/24 или дробь с первичной величиной напряжения в числителе, а вторичной — знаменателе. Он же позволяет определить соотношение числа витков между обмотками.
На первом этапе мы уже определили электрические мощности каждой обмотки. По ним и величине напряжения необходимо рассчитать силу электрического тока I=S/U внутри любой катушки.
Этап №3. Как вычислить диаметры медного провода для каждой обмотки
При определении поперечного сечения проводника катушки используется эмпирическое выражение, учитывающее, что плотность тока лежит в пределах 1,8÷3 ампера на квадратный миллиметр.
Величину тока в амперах для каждой обмотки мы определили на предыдущем шаге.
Теперь просто извлекаем из нее квадратный корень и умножаем на коэффициент 0,8. Полученное число записываем в миллиметрах. Это расчетный диаметр провода для катушки.
Он подобран с учетом выделения допустимого тепла из-за протекающего по нему тока. Если место в окне сердечника позволяет, то диаметр можно немного увеличить. Тогда эти обмотки будут лучше приспособлены к тепловым нагрузкам.
Когда даже при плотной намотке все витки провода не вмещаются в окне магнитопровода, то его поперечное сечение допустимо чуть уменьшить. Но, такой трансформатор следует использовать для кратковременной работы и последующего охлаждения.
Вычисление основано на использовании магнитных свойств железа сердечника. Промышленные трансформаторы собираются из разных сортов электротехнической стали, подбираемые под конкретные условия работы. Они рассчитываются по сложным, индивидуальным алгоритмам.
Домашнему мастеру достаются магнитопроводы неизвестной марки, определить электротехнические характеристики которой ему практически не реально. Поэтому формулы учитывают усредненные параметры, которые не сложно откорректировать при наладке.
Для расчета вводится эмпирический коэффициент ω’. Он учитывает величину напряжения в вольтах, которое наводится в одном витке катушки и связан с поперечным сечением магнитопровода Qc (см кв).
В первичной обмотке число витков вычислим, как W1= ω’∙U1, а во вторичной — W2= ω’∙U2.
Этап №5. Учет свободного места внутри окна магнитопровода
На этом шаге требуется прикинуть: войдут ли все обмотки в свободное пространство окна сердечника с учетом габаритов катушки.
Для этого допускаем, что провод имеет сечение не круглое, а квадрата со стороной одного диаметра. Тогда при совершенно идеальной плотной укладке он займет площадь, равную произведению единичного сечения на количество витков.
Увеличиваем эту площадь процентов на 30, ибо так идеально намотать витки не получится. Это будет место внутри полостей катушки, а она еще займет определенное пространство.
Далее сравниваем полученные площади для катушек каждой обмотки с окном магнитопровода и делаем выводы.
Второй способ оценки — мотать витки «на удачу». Им можно пользоваться, если новая конструкция перематывается проводом со старых рабочих катушек на том же сердечнике.
Общие конструктивные схемы и классификация
Импульсные трансформаторы отличаются многообразием конструктивного исполнения. Это обусловлено их применением в широком диапазоне энергий, мощностей, напряжений, длительностей импульсов, различиями в назначении и условиях эксплуатации. Тем не менее, несмотря на это многообразие, все конструктивные схемы ИТ можно свести к четырем основным: стержневой, броневой, бронестержневой и тороидальный. Таким образом, по конструктивным признакам ИТ можно классифицировать следующим образом:
- стержневые;
- броневые;
- бронестержневые;
- тороидальные.
Форма поперечного сечения МС у них может быть прямоугольной или круговой. Характерная конструктивная особенность ИТ – относительно малое число витков в его обмотках. По этой причине объем проводниковых материалов обмоток ИТ намного меньше объема МС и в качестве обобщающего технико-экономического показателя конструкции ИТ естественно принимать объем его МС.
Классификация импульсных трансформаторов по виду сердечника и катушек.
Если принять такой показатель качества, то так как не все конструкции в этом отношении равноценны, ведь в каждой из них эффективно используется только та часть объема МС, которая заключена внутри обмоток, внешние части МС, т.е. ярма, служат только для проведения рабочего магнитного потока ИТ, а поперечное сечение постоянно по длине, то эффективность использования МС можно охарактеризовать коэффициентом использования длины λ = h/l, где под высотой обмотки h понимается суммарная высота катушек.
Максимальные значения этого коэффициента составляют: для тороидальной МС – 0.95; для стержневой – 0.6; для броневой и бронестержневой – 0.3. Таким образом, наиболее экономичны ИТ тороидального типа, относительно экономичны – стержневого и менее всего экономичны – броневого и бронестержневого.
Если учесть, что конструктивно и технологически стержневые, броневые и бронестержневые ИТ примерно равноценны, то следует вывод о целесообразности применения тороидальных и стержневых МС в ИТ, особенно мощных, отличающихся большим объемом МС.
Коэффициент использования длины МС можно повысить, увеличив высоту стержня или диаметр МС. Однако такие вытянутые в высоту или увеличенного диаметра конструкции имеют большие габариты, менее прочны, нетехнологичны, для них характерен повышенный расход проводниковых материалов, потери мощности в обмотках, искажения трансформированных импульсов и другие недостатки.
Однако наиболее важно то, что высшие функциональные показатели достигаются в конструкциях ИТ с максимальной большой площадью сечения и минимальной длиной МС. В связи с этим коэффициент использования длины МС является показателем относительным и характеризует только степень конструктивного совершенства ИТ
Схема подключения импульсных трансформаторов.
Облегчает классификацию следующее соображение. Характерным признаком класса напряжения является тип и конструкция главной изоляции ИТ, в сильной степени определяющая собой и конструкцию ИТ в целом.
Так, в ИТ на напряжение до 20 кВ удается применять сухую изоляцию из слоистых диэлектриков, в некоторых случаях – воздушную при нормальном давлении.
Будет интересно Необходимые условия для выполнения параллельной работы трансформаторов
Поэтому, несмотря на определенную условность, целесообразно ввести такую классификацию по классу напряжения, чтобы значения напряжения отражало и конструктивные особенности изоляции, т.е. в следующем виде:
- ИТ класса напряжения до 20 кВ;
- ИТ класса напряжения до 100 кВ;
- ИТ класса напряжения свыше 100 кВ.
В интервале напряжений 20-100 кВ обычно применяют бумажно-масляную или бумажно-пленочно-масляную изоляцию. При напряжении более 100 кВ лучшие результаты дает применение чисто масляной изоляции.
Как намотать импульсный трансформатор?
Вначале нужно подготовить ферритовое кольцо.
Для того чтобы провод не прорезал изоляционную прокладку, да и не повредился сам, желательно притупить острые кромки ферритового сердечника. Но, делать это не обязательно, особенно если провод тонкий или используется надёжная прокладка. Правда, я почему-то всегда это делаю.
При помощи наждачной бумаги скругляем наружные острые грани.
То же самое проделываем и с внутренними гранями кольца.
Чтобы предотвратить пробой между первичной обмоткой и сердечником, на кольцо следует намотать изоляционную прокладку.
В качестве изоляционного материала можно выбрать лакоткань, стеклолакоткань, киперную ленту, лавсановую плёнку или даже бумагу.
При намотке крупных колец с использованием провода толще 1-2мм удобно использовать киперную ленту.
Иногда, при изготовлении самодельных импульсных трансформаторов, радиолюбители используют фторопластовую ленту – ФУМ, которая применяется в сантехнике.
Работать этой лентой удобно, но фторопласты обладают холодной текучестью, а давление провода в области острых краёв кольца может быть значительным.
Во всяком случае, если Вы собираетесь использовать ленту ФУМ, то проложите по краю кольца полоску электрокартона или обычной бумаги.
При намотке прокладки на кольца небольших размеров очень удобно использовать монтажный крючок.
Монтажный крючок можно изготовить из куска стальной проволоки или велосипедной спицы.
Аккуратно наматываем изолирующую ленту на кольцо так, чтобы каждый очередной виток перехлёстывал предыдущий с наружной стороны кольца. Таким образом, изоляция снаружи кольца становится двухслойной, а внутри – четырёх-пятислойной.
Для намотки первичной обмотки нам понадобится челнок. Его можно легко изготовить из двух отрезков толстой медной проволоки.
Необходимую длину провода обмотки определить совсем просто. Достаточно измерить длину одного витка и перемножить это значение на необходимое количество витков. Небольшой припуск на выводы и погрешность вычисления тоже не помешает.
Пример
34(мм) * 120(витков) * 1,1(раз) = 4488(мм)
Если для обмотки используется провод тоньше, чем 0,1мм, то зачистка изоляции при помощи скальпеля может снизить надёжность трансформатора. Изоляцию такого провода лучше удалить при помощи паяльника и таблетки аспирина (ацетилсалициловой кислоты).
Будьте осторожны! При плавлении ацетилсалициловой кислоты выделяются ядовитые пары!
Если для какой-либо обмотки используется провод диаметром менее 0,5мм, то выводы лучше изготовить из многожильного провода. Припаиваем к началу первичной обмотки отрезок многожильного изолированного провода.
Изолируем место пайки небольшим отрезком электрокартона или обыкновенной бумаги толщиной 0,05… 0,1мм.
Наматываем начало обмотки так, чтобы надёжно закрепить место соединения.
Те же самые операции проделываем и с выводом конца обмотки, только на этот раз закрепляем место соединения х/б нитками. Чтобы натяжение нити не ослабло во время завязывания узла, крепим концы нити каплей расплавленной канифоли.
Если для обмотки используется провод толще 0,5мм, то выводы можно сделать этим же проводом. На концы нужно надеть отрезки полихлорвиниловой или другой трубки (кембрика).
Затем выводы вместе с трубкой нужно закрепить х/б нитью.
Поверх первичной обмотки наматываем два слоя лакоткани или другой изолирующей ленты. Это межобмоточная прокладка необходима для надёжной изоляции вторичных цепей блока питания от осветительной сети. Если используется провод диаметром более 1-го миллиметра, то неплохо в качестве прокладки использовать киперную ленту.
Если предполагается использовать выпрямитель с нулевой точкой, то можно намотать вторичную обмотку в два провода. Это обеспечит полную симметрию обмоток. Витки вторичных обмоток также должны быть равномерно распределены по периметру сердечника. Особенно это касается наиболее мощных в плане отбора мощности обмоток. Вторичные обмотки, отбирающие небольшую, по сравнению с общей, мощность, можно мотать как попало.
Если под рукой не оказалось провода достаточного сечения, то можно намотать обмотку несколькими проводами, соединёнными параллельно.
На картинке вторичная обмотка, намотанная в четыре провода.
Вернуться наверх к меню.
Персональный сайт — Расчет трансформатора
В радиолюбительских условиях обычно имеются трансформаторы извлеченные из отработавших свой срок устройств. Исходя из этих соображений следует производить расчет. Расчет по распространенному варианту(где исходные данные выходное напряжение и ток) на практике трудно реализовать, не всега можно найти нужное железо и провод для намотки. В результате приходится использовать имеющийся магнитопровод большей мощности, превышающий потребности и следовательно увеличивающий размеры.
Магнитопроводы имеют три основные конструкции: броневая, стержневая, торроидальная.
Торроидальная представляет из себя кольцо на котором намотаны обмотки. Магнитное излучение такой конструкции наименьшее из всех трех. Намотка обмоток представляет некоторые трудности и поэтому применяется в радиолюбительской практике редко.
У стержневой конструкции две катушки и обмотки как правило делятся пополам и соединяются последовательно. Здесь могут возникнуть трудности с направлением намотки катушек и их последующего соединения. Среди достоинств следует отметить что применяя данную конструкцию можно уменьшить высоту устройства если расположить трансформатор горизонтально. Стержневые конструкции применяются в основном для мощных трансформаторов.
Наиболее популярной является броневая конструкция(на рисунке). У броневой конструкции одна катушка и её удобно наматывать. Броневая конструкция применяется для трансформаторов малой и средней мощности, что как правило является достаточным в радиолюбительской практике.
Поскольку чаще всего применяется броневая конструкция, то расчет будет производится для нее.
Основной целью расчета является оптимальное использование имеющегося железа.
Главным выходным параметром при таком расчете является напряжение. Выходной ток будет рассчитываться и по результатам расчета принимается решение о пригодности магнитопровода.
Расчет
Исходные данные:
Входное напряжение, частота, выходное напряжение, выходной ток, габаритные размеры магнитопровода.
Частота 50 Гц.
Измерить a, b, c, h и ввести в программу. Измерения производить в сантиметрах.
Программа призвана сокращать время расчета и исходя из этих соображений входное напряжение уже введено и равняется 220 В. При расчете с другим входным напряжением следует это значение исправить.
В качестве разделителя целой и дробной частей используется точка.
Ввести выходное напряжение. Нажать на кнопку расчет.
Полученные расчетные данные являются оптимальными(идеальными) для используемого магнитопровода. На практике рассчитанного диаметра провода как правило не оказывается. В этом случае выбирается ближайший меньший расчетного или тот что имеется. Если применить провод с диаметром больше расчетного, то обмотки не смогут уместиться в окне магнитопровода.
После выбора провода обмотки можно уточнить выходной ток и принять решение о пригодности магнитопровода
Заказать изготовление программ по индивидуальным условиям можно через форму обратной связи.
Область применения
Задача импульсного трансформатора заключается в защите электрического прибора от короткого замыкания, чрезмерного увеличения значения напряжения, нагрева корпуса. Стабильность блоков питания обеспечена импульсными трансформаторами. Подобные схемы применяются в триодных генераторах, магнетронах. Импульсник применяется при работе инвертора, газового лазера. Данные приборы устанавливают в схемах в качестве дифференцирующего трансформатора.
Радиоэлектронная аппаратура основана на трансформаторной способности импульсных преобразователей. При использовании импульсного блока питания организовывается работа цветного телевизора, обычного компьютерного монитора и т. д. Помимо обеспечения потребителя током требуемой мощности и частоты, трансформатором выполняется стабилизация значения напряжения при работе оборудования.
Рабочая частота трансформатора
Прежде всего, трансформатор электростимулятора должен хорошо пропускать сигналы в диапазоне от 20 Гц до 400 кГц (условно). Не лучшим решением будет использование сетевого трансформатора 220/12 в качестве повышающего. Несмотря на то, что сетевые трансформаторы со стальным сердечником самые доступные, они практически не передают частоты выше 50 Гц.
Самым подходящим вариантом будет трансформатор для систем звукового усиления. Такие трансформаторы называют: «аудио трансформаторами», «сигнальными трансформаторами», «трансформаторами звуковой частоты», «звуковыми трансформаторами».
Сердечники в хороших трансформаторах делают из пермаллоя.
Выбор типа магнитопровода.
Наиболее универсальными магнитопроводами являются Ш-образные и чашкообразные броневые сердечники. Их можно применить в любом импульсном блоке питания, благодаря возможности установки зазора между частями сердечника. Но, мы собираемся мотать импульсный трансформатор для двухтактного полумостового преобразователя, сердечнику которого зазор не нужен и поэтому вполне сгодится кольцевой магнитопровод. https://oldoctober.com/
Для кольцевого сердечника не нужно изготавливать каркас и мастерить приспособление для намотки. Единственное, что придётся сделать, так это изготовить простенький челнок.
На картинке изображён ферритовый магнитопровод М2000НМ.
Идентифицировать типоразмер кольцевого магнитопровода можно по следующим параметрам.
D – внешний диаметр кольца.
d – внутренний диаметр кольца.
H – высота кольца.
В справочниках по ферритовым магнитопроводам эти размеры обычно указываются в таком формате: КDxdxH.
Пример: К28х16х9
Вернуться наверх к меню.
Конструкция (виды) импульсных трансформаторов
В зависимости от формы сердечника и размещения на нем катушек, ИТ выпускаются в следующих конструктивных исполнениях:
- стержневом;
Конструкция стержневого импульсного трансформатора
- броневом;
Конструкция импульсного трансформатора в броневом исполнении
- тороидальном (не имеет катушек, провод наматывается на изолированный сердечник);
Конструкция тороидального импульсного трансформатора
- бронестержневом;
Конструктивные особенности бронестержневого импульсного трансформатора
На рисунках обозначены:
- A — магнитопроводный контур, выполненный из марок трансформаторной стали, изготовленной по технологии холодного или горячего металлопроката (за исключением сердечника тороидальной формы, он изготавливается из феррита);
- В — катушка из изолирующего материала
- С — провода, создающие индуктивную связь.
Заметим, что электротехническая сталь содержит мало добавок кремния, поскольку он становится причиной потери мощности от воздействия вихревых токов на контур магнитопровода. В ИТ тороидального исполнения сердечник может производится из рулонной или ферримагнитной стали.
Пластины для набора электромагнитного сердечника подбираются толщиной в зависимости от частоты. С увеличением этого параметра необходимо устанавливать пластины меньшей толщины.
Расчет токов однофазного кз в сети 0,4 кВ
В данной статье речь пойдет об определении величины тока однофазного тока к.з. в сетях 0,4 кВ с глухозаземленной нейтралью.
Данный вопрос очень актуален, так как электрические сети 0,4 кВ, являются наиболее распространёнными.
В настоящее время существует два метода расчета однофазного КЗ – точный и приближенный и оба метода основаны на методе симметричных составляющих.
Точный метод определения тока однофазного КЗ
1.1 Точный метод определения тока однофазного КЗ, представлен в ГОСТ 28249-93 формула 24, и рассчитывается по формуле:
Используя данный метод можно с большой степенью точности определять токи КЗ при известных сопротивлениях прямой, обратной и нулевой последовательности цепи фаза-нуль.
К сожалению, на практике данный метод не всегда возможно использовать, из-за отсутствия справочных данных на сопротивления прямой, обратной и нулевой последовательности для кабелей с алюминиевыми и медными жилами с учетом способов прокладки фазных и нулевых проводников.
Приближенный метод определения тока однофазного КЗ
2.1 Приближенный метод определения тока однофазного кз при большой мощности питающей энергосистемы (Хс < 0,1Хт), рассчитывается по формуле :
где:
- Uф – фазное напряжение сети, В;
- Zт – полное сопротивление трансформатора току однофазного замыкания на корпус, Ом;
- Zпт – полное сопротивление петли фаза-нуль от трансформатора до точки КЗ, Ом.
2.2 Если же питающая энергосистема имеет ограниченную мощность, то тогда ток однофазного кз определяется по формуле 2-26 :
2.3 Значение Z∑ определяется по таблице 2.9 или можно определить по формуле 2-25 :
где: х1т и r1т; х2т и r2т; х0т и r0т — индуктивное и активное сопротивления трансформатора токам прямой, обратной и нулевой последовательности, мОм. Принимаются по таблице 2.4 .
Значение Zт/3 для различных трансформаторов с вторичным напряжением 400/230 В, можно принять по таблицам 2, 3, 4 .
Сопротивления контактов шин, аппаратов, трансформаторов тока в данном методе не учитываются, поскольку арифметическая сумма Zт/3 и Zпт создает не который запас.
2.4 Полное сопротивление трансформатора Zт, определяется по формуле 2-24 :
2.5 Полное сопротивление петли фаза-нуль, определяется по формуле 2-27 :
где:
- Zпт.уд. – полное удельное сопротивление петли фаза-нуль для каждого участка от трансформатора до места КЗ определяется по таблицам 2.10 – 2.14 или по таблицам , мОм/м;
- l – длина участка, м.
Ниже представлены справочные таблицы со значениями удельного сопротивления петли фаза-нуль для различных кабелей и шинопроводов согласно .
Справочные таблицы 7, 10 со значениями активных сопротивления медных и алюминиевых проводов, кабелей .
raschet.info
ПОДБОР ФЕРРИТОВОГО КОЛЬЦА
С ферритовыми кольцами дел раньше почти не имел, какие могут быть дела с безликими компонентами. Нет на них маркировки, не встречал. Основной источник их появления «разбор». Впрочем, один раз купил, когда собирал тестер транзисторов, был нужен по схеме. Покупал — в магазине подали такое же безликое изделие как и лежащие дома, покупка не впечатлила. Доверие конечно вещь необходимое и заверения продавца были приняты, но собранное на этом кольце устройство не заработало. Больше не покупаю. На сегодняшний день точно знаю, что колечко от лампочки «энергосберегайки» точно работоспособно в низковольтных преобразователях. А как быть с прочими — мотать на удачу? Пару раз пробовал, не выгорело, так что теперь по мне уж лучше выбросить. Однако необходимость заставила кое-чему научиться, пусть данный метод определения дает параметры магнитной проницаемости только для «прикидки» возможного применения интересующего ферритового кольца, тем не менее, это уже информация.
На предмет теста выбрано шесть ферритовых колец с намерением отобрать те из них, которые можно попробовать применить в низковольтных повышающих преобразователях напряжения. Необходимо следующее: каждое ферритовое колечко измерить штангенциркулем, наружный и внутренний диаметр, его высоту (толщину) в мм, затем равномерно намотать на него 10 — 20 витков провода диаметром 0,3 — 0,4 мм и измерить индуктивность в микрогенри (мкГн).
- №1 покрыто пластиковой оболочкой (и о чудо! имеет маркировку «G.N.T. 1203»), габариты (D x d x h ) 14,6 х 6,7 х 5,5мм
- №2 в зелёной оболочке, 13 х 7,5 х 6,7 мм
- №3 в жёлтой оболочке, 13 х 7,5 х 5,3 мм
- №4 маленькое в зелёной оболочке, 10 х 5,5 х 5,5 мм
- №5 от лампочки «энергосберегайки», 10 х 5 х 5 мм
- №6 феррит без оболочки, 9,2 х 5 х 5,2 мм
На каждое из колец было намотано по 10 витков медного провода в изоляции с диаметром жилы 0,4 мм. Мотать можно таким приспособлением. Индуктивность кольца №1 составила 2,81 мкГн, в №2 и №3 индуктивности обнаружено не было и они «сошли с дистанции».
Индуктивность кольца №4 оказалась 0,48 мкГн, №5 – 0,47 мкГн, №6 – 0,30 мкГн
Полученные данные, габаритные размеры и значение индуктивности, были вставлены в калькулятор расчёта магнитной проницаемости ферритовых материалов (дробные числа вводить через точку). Необходимо также указать тип магнитопровода (поставить точку в «окне»), в данном случае это «Тор» и количество фактически намотанных витков провода (W). Нажимаем рассчитать и получаем результат – эффективную магнитную проницаемость.
У №1 она равна 34.43792, у №4 – 7.515167
Магнитная проницаемость ферритового кольца под №5 – 7.050014, №6 – 4.876385
Итогом вышеуказанных действий ранее безликие ферритовые кольца, что делать с которыми было совершенно не ясно, получили личную информацию и стали практически годными для дальнейшего использования, ибо соотнося имеющиеся теперь данные с данными проверенных в работе ферритовых колец (то есть образцовыми, коим в данном конкретном случае выступило колечко от лампочки «энергосберегайки») можно подобрать необходимое. Например из подвергнутых испытанию кольцо №4 имеет данные подобные «образцовому» под №5, его смело можно пробовать в повышающем низковольтном преобразователе напряжения (уже начинаю сборку 2,4 — 9 В). Должно заработать и №6. Про №1 ничего пока сказать не могу – подобного «образца» нет.
Используя данную формулу можно обойтись и без специального программного калькулятора, вполне достаточно будет и обыкновенного. Пробовал.
Формула расчёта магнитной проницаемости
Магнитная проницаемость — физическая величина, коэффициент (зависящий от свойств среды), характеризующий связь между магнитной индукцией B и напряжённостью магнитного поля H в веществе. Материал подготовил — Babay iz Barnaula.
Источник