Радиоэлектроника для новичка

Оглавление

Основные обозначения

Для удобства понимания детали источники питания провода и их соединения имеют графические обозначения. Буквенные символы распространенных радиодеталей приведены в таблице:

Деталь Обозначение
Резистор R
Конденсатор C
Катушка индуктивности L
Полупроводник V
Предохранитель F
Элемент питания G

Источников питания

Для обозначения простого источника питания применяется символ, состоящий из 2 разделенных промежутком линий. Тонкая длинная характеризует положительный полюс, а короткая толстая — отрицательный. Кроме того, рядом с линиями ставится обозначение полюсов. Если нужно изобразить батарею, состоящую из нескольких гальванических элементов, то 2 символа для источника питания соединяются короткой пунктирной линией.

Проводов и их соединений

Проводники обозначаются тонкими горизонтальными или вертикальными линиями. Допускается отклонение на прямой или тупой угол. Если провода пересекаются, то место соединения выделяется точкой.

Общего провода

Чтобы упростить начертание и чтение ПС, употребляется обозначение общего провода. Оно представляет собой перевернутую букву «Т». Ее вертикальная перекладина соединена со всеми проводами, которые подсоединены в точку с отрицательным потенциалом.

Радиодеталей

Для каждой радиодетали предусмотрено свое обозначение, утвержденное ГОСТом или другими стандартами. Благодаря этому достигается единообразие оформления.

Резисторы

Мощность сопротивлений обозначается в соответствии с таблицей:

Символ Мощность
2 косые черты 0,125 Вт
1 косая черта 0,25 Вт
Длинная горизонтальная черта 0,5 Вт
1 вертикальная черта 1 Вт
2 вертикальные черты 2 Вт
Римская цифра «5» 5 Вт

Символ резистора — сплошной прямоугольник.

Конденсаторы

Эти элементы обозначаются как 2 параллельные короткие линии, к которым подводятся проводники. Если емкость регулируется, то указанный символ перечеркивается по диагонали стрелкой. Подстроечные конденсаторы отличаются тем, что их обозначение пересекается молоточком, а также указываются номиналы.

Диоды

Символ этой детали — равносторонний треугольник, пересеченный подведенным к нему проводником. Одна из его вершин, к которой добавлена короткая риска, обозначает анод. Соответственно, сторона треугольника, пересеченная проводом, — это катод. В зависимости от разновидности полупроводника, символ дополняется вспомогательными метками.

Управление освещением с использованием реле времени

Реле времени широко используются в схемах автоматики, в том числе для управления освещением.

Реле времени можно разделить на две большие группы:

  1. Программируемые реле времени — реле замыкает и размыкает свои контакты в соответствии с заданной программой;
  2. Таймеры — реле времени замыкает размыкает свои контакты на заданное время после приложения управляющего сигнала.

Программируемые реле времени и таймеры могут быть электронными и электромеханическими.

Программируемые реле времени могут быть с суточным (одна и та же программа повторяется каждые сутки), недельным (одна и та же программа повторяется каждую неделю) и годовым циклом (программа задаётся на год).

Базовая схема и принцип работы

Рассмотрим работу схемы управления освещением на базе программируемого реле времени, работающего по одной суточной программе.

Управление освещением при помощи реле времени. Базовая схема

Допустим, освещение должно быть включено ежедневно с 9:00 до 18:00. В реле времени устанавливаем текущее время и задаем программу, в соответствии с которой в 9:00 реле должно замкнуть свои контакты сроком на 9 часов. Ежедневно, при наступлении 9:00 реле времени KT1 замыкает свои контакты, силовая цепь оказывается замкнутой и освещение включено. Через 9 часов работа программы заканчивается и реле размыкает свои контакты — освещение отключается.

Схемы управления освещением нескольких линий при помощи реле времени

Для управления несколькими линиями по одной программе применяют реле времени в комбинации с контакторами. Контакторы включают и отключают питание, а реле времени управляет их работой.

Управление освещением при помощи реле времени и контакторов

Питание на катушки контакторов 1KM1, 2KM1, 3KM1 подаётся через трехпозиционный переключатель SA1 с нейтральным положением:

  • В положении «Ручное» питание напрямую подаётся на катушки контакторов KM и они замыкают свои пары контактов, освещение включается в соответствии с заданной программой;
  • В положении «0» цепь питания катушек контакторов разорвана и освещение отключено;
  • В положении «Автомат» питание на катушки контакторов подаётся через контакты реле времени KT1. Включением и отключением освещения управляет реле времени, замыкая и размыкая свои контакты в соответствии с заданной программой.

При необходимости, можно дополнить схему сигнальной лампой HL, включенной параллельно катушкам контакторов, которая будет информировать о включении освещения.

Управление освещением с использованием реле времени для лестничных клеток

Для экономии электроэнергии и управления освещением с нескольких мест используют реле времени из группы таймеров. Данный тип реле замыкают или размыкают свои контакты после подачи на их катушку управляющего сигнала, замыкание или размыкание контактов происходит с заданной временной задержкой.

Основное применение данный тип реле времени нашёл в схемах управления двигателями и схемах АВР (автоматического ввода резерва), но для управления освещением также используется. Например, для управления освещением лестничных клеток.

Рассмотрим применение и работу реле времени для решения данной задачи:

  1. В начальный момент времени контакты реле KT1 разомкнуты, освещение отключено. Кнопки SB1, SB2… установлены на каждом этаже лестничной клетки и подключены параллельно к управляющим контактам реле времени KT1.
  2. При нажатии любую из кнопок SB, на катушку реле времени KT1 поступает управляющий сигнал, оно замыкает свои контакты, освещение включается, а реле времени начинает отсчет.
  3. По прошествии заданного времени реле KT1 размыкает свои контакты и освещение отключается.
  4. Если при замкнутых контактах реле (т.е. до истечения заданного времени) поступает новый управляющий сигнал, то отсчет времени начинается заново.

Управление освещением лестничных клеток с использованием реле времени

Таким образом, человек, заходя на лестничную клетку, нажимает кнопочный выключатель SB и включает освещение. На следующем этаже опять нажимает кнопку и т.д. Через заданное время освещение на лестничной клетке отключается. Настройка задержки отключения выбирается таким образом, чтобы человек достаточно времени, чтобы дойти от одного кнопочного выключателя до другого.

Данную схему можно также использовать для управления освещением в коридорах. Она позволяет организовать включение освещения с нескольких мест (как при использовании импульсного реле) и при этом ещё сэкономить электроэнергию.

Составление и согласование проекта

Проект внутренней электропроводки для частного дома состоит из:

  • расчета мощности, вводных устройств и требуемого сечения проводов;
  • расчета систем заземления и молниезащиты;
  • схемы разводки электропроводки;
  • плана расположения в здании кабельных линий и силового оборудования;
  • сметы на расходные материалы.

Делается такой полноценный проект внутридомовой проводки только по договору в специализированной компании с лицензией. Если его потом придется согласовывать у поставщика электрической энергии, то выполненные самостоятельно чертежи и расчеты приняты к рассмотрению не будут.

Самому можно сделать лишь электрическую и/или монтажную схему, которые облегчают работы при выполнении монтажа электропроводки своими руками. В них схематично указываются аппараты защиты и линии проводов, чтобы упростить себе составление сметы и сборку всей системы.

Схема монтажа электропроводки в доме

Выбор фаз

Одним из наиболее важных моментов проекта и схем проводки является тип входного напряжения. Здесь особо анализировать, как, например, многочисленные плюсы и минусы свайного фундамента, не придется. Оно может быть однофазным либо трехфазным, на 220 либо 380 Вольт. При выборе исходить надо из имеющихся возможностей питающего трансформатора (что смогут дать энергетики) и потребляющего ток электрооборудования.

В остальных ситуациях, когда частный дом по площади не превышает 100 квадратов и в нем нет электрических водонагревателей, можно обойтись обычными однофазными 220 В. Требования к трехфазной электропроводке выше. Стоит она дороже, а нужна далеко не всегда. При этом надо учесть, что 380 В на трех фазах могут потребоваться в будущем. И тогда придется согласования начинать сначала. Здесь необходимо все взвесить и предусмотреть заранее.

Как рассчитать мощность потребления при разводке

Для расчета общей мощности потребления и необходимой для этого электропроводки дома необходимо просуммировать киловатты всех бытовых и осветительных приборов в жилище. Данные параметры есть в техпаспортах на оборудование и в специальных таблицах. Плюс сюда добавляются пусковые нагрузки и 20% про запас.

Самыми энергоемкими в коттедже являются проточные нагреватели воды (около 4–5 кВт), электроплиты с духовкой (до 3 кВт), электрообогреватели (1,5–3 кВт), пылесосы (около 1,5 кВт) и стиральные машинки (порядка 2–2,5 кВт). Немало потребляет также вентиляция в частном доме, если она сделана приточно-вытяжной и с подогревом воздуха без рекуператора.

Средняя мощность потребления бытовой техники

Для света, особенно если он светодиодный, требуется относительно немного (до 0,5 кВт). Приблизительно также мало сейчас потребляют телевизоры, компьютеры и иная используемая в быту техника. Но все это обязательно надо учесть и сложить, чтобы вычислить суммарную мощность коттеджа. Она нужна, чтобы получить ТУ и рассчитать сечение электропроводки.

Как рассчитать пропускную мощность электрической проводки

Группы потребителей

Чтобы нагрузка во внутридомовой сети распределялась равномерно, на схеме разводки проводов потребители разбиваются на несколько групп. Например, одна идет на уличное освещение придомового участка, вторая на хозпостройки, третья на осветительные приборы в коттедже и четвертая на розетки в нем. Если дом большой, то такая разбивка может производиться по этажам и помещениям.

Основные группы потребления

На каждую отдельную линию ставятся свои автоматы и УЗО (устройства защитного отключения). Это повышает безопасность эксплуатации домовой электросети и упрощает поиск проблемных точек в системе при срабатывании защиты. На схеме разводки электропроводки должны быть указаны все защитные аппараты и потребляемый ток на контуре, который запитан с каждого из них.

Групповое УЗО и провода по сечению за ним подбираются так, чтобы соответствовать потреблению конкретной группы. На мощное оборудование рекомендуется выделять свою линию питания, а на остальных количество потребителей не стоит делать выше 5–6 розеток. Лучше заложить в проекте их больше, но с меньшим риском перегорания жил из-за длительных перегрузок.

Как проверить кварцевый резонатор

Схемы пробников радиолюбителя

Иногда у радиолюбителей бывает ситуация, когда необходимо проверить кварцевый резонатор на работоспособность и определить его частоту, хотя бы примерно. Чтобы проверить кварц нужно, собрать простейший пробник на микросхеме К155ЛА3. Схема пробника очень простая и ее соберет даже начинающий радиолюбитель.

В данной схеме светодиод будет указывать на наличие генераций в кварце. Для точного определения, имеется вывод, который подсоединяется к антенне приемника или к частотомеру. С помощью конденсаторов C2-C5 и переключателя S1 можно грубо определить частоту.

Светодиод HL1 начинает светиться при возбуждении генератора D1.1 DD1.2 когда кварцевый резонатор подключен. Имея опыт работы с пробником можно определить диапазон генерации кварца по силе свечения HL1. Чем ярче светится светодиод тем ниже частота генерации и тем активнее кварц. Затем параллельно светодиоду подключается шунтирущия емкость C2-C5. Когда генератор работает на частоте выше 14 МГц конденсатор C2 «гасит» светодиод. Если на кварце написана другая частота, а при включении емкости C2 светодиод не светится, значит кварц неисправен. В таком случае генератор работает только за счет паразитной емкости кварца. При включении емкости C3 светодиод гаснет, при частоте генерации выше 7 МГц. При C4 — 2 МГц При подключении C5 — 500кГц.

Разные типы конденсаторов имеют разное индуктивное сопротивление и номиналы C2-C5 могут немного отличаться от приведенных здесь

Для удобства конденсаторы подключаются выключателем, важно чтобы длина выводов C2-C3, была минимальной.

Пробник кварцевых резонаторов хорошо работает с кварцами
От 100 кГц до 18 МГц. Питается прибор от 3 до 6 вольт.

Импортный аналог микросхемы К155ЛА3 — 7400PC
Cкачать даташит микросхемы К155ЛА3

Дальше »

При повороте ключа зажигания ничего не происходит.

Электрика автомобиля

 Столкнулся с такой проблемой — автомобиль «zaz sens» перестал заводиться. Вставляю ключ зажигания, поворачиваю до первого щелчка вроде все как обычно, начинает качать бензонасос. Насос перестает качать, я поворачиваю ключ зажигания, чтобы завести автомобиль и в этот момент все гаснет и ничего не происходит, как будто автомобиль выключается. При этом приборная панель, габаритные огни и даже аварийка не моргает и ничего не работает. Если включить свет в салоне, то он светит очень тускло, едва заметно. При следующих попытках завести, уже и бензонасос не качает. Если подождать пару часов, то повторяется та же ситуация, качает насос при попытке запустить стартер — все отключается и тишина.

Как я решил данную проблему.

Первое на что я подумал, это плохой контакт на массе. Я взял провод и подсоединил минус  от аккумулятора напрямую к кузову, при этом клеммы не отсоединял. Попробовал завести ничего не изменилось.

Второе что я сделал — это проверил все предохранители, они все оказались исправные.

На следующей день я решил зарядить аккумулятор, снял клеммы и поставил на зарядку. Полностью зарядил, не помогло.

Решил почистить клеммы, стал опять откручивать и случайно заметил что гайка на плюсовой клемме аккумулятора — очень слабо закручена, к которой присоединяется тонкий провод идущий от блока управления. Я открутил, все почистил и закрутил потуже. И все завелось, как обычно, даже ещё лучше.

Надеюсь данная информация кому-нибудь пригодится. Всем удачи!

Дальше »

Номиналы радиодеталей

Вообще, в этом плане есть разногласия. Согласно ГОСТУ на текущий момент, номиналы деталей на принципиальных схемах не указывается. Это сделано ради того, чтобы не нагромождать схему информацией.

К принципиальной схеме прилагается список деталей, монтажная и структурные схемы, а также печатная плата.

Есть еще один общепринятый стандарт. На схемах указываются номиналы некоторых деталей и их рабочие напряжения.

Рассмотрим на схеме два конденсатора.

В данном случае C5 это неполярный конденсатор с емкостью 0,01 мкФ. Микрофарады могут обозначаться как мкФ, так и uF. А конденсатор С6 полярный и электролитический. На это указывает знак плюс возле УГО. Емкость С6 равна 470 мкФ. Номинальное рабочее напряжение указывается в вольтах. Здесь для С6 это 16 В.

Если на схеме нет приставки микрофарад (мкФ, uF), или нанофарад (нФ, nF) то емкость этого конденсатора измеряется в пикофарадах (пФ, pF). Такое условие не общепринятое, поэтому тщательно изучите схему, которую вы собираетесь читать или собирать. В фарадах (F) емкостей мало, поэтому используются мкФ, нФ и пФ.

Способы ввода электричества

Если проводку в доме можно проложить самостоятельно, то вводный кабель подключают только представители сетевой компании. Процедура выполняется после проверки заземляющего контура и приборов учета. Работы осуществляют 2 способами.

По воздуху

Такой способ считается более простым и дешевым. В таком случае от опоры ЛЭП протягивают самонесущий изолированный провод (СИП). Такой метод подключения к централизованной сети не всегда можно использовать ввиду ограничения расстояния от дома до столба. Кроме того, воздушный кабель выглядит неэстетично, может повреждаться из-за сильного ветра. При большом расстоянии от столба до дома устанавливают дополнительную опору, иначе кабель провисает.

Ввод электричества по воздуху — самый простой и дешевый способ.

Подземный монтаж

Укладка вводного кабеля в землю — более надежный метод. Провод заглубляют на 80-100 см, защищают пластиковой или стальной трубой. При использовании этого варианта требуется отверстие в фундаменте.

Управление освещением с использованием импульсного реле

Импульсное реле позволяет организовать управление освещением одного, двух, трех, четырех и практически неограниченного числа мест. Для реализации схемы потребуется импульсное (бистабильное) реле и кнопочные (нажимные) выключатели.

Для понимания логики работы схемы следует разобраться с особенностями работы импульсного реле. Это реле каждый раз переключает свои контакты при подачи импульса на катушку управления.

В зависимости от производителя, подача импульса может быть как на основной питающий вход реле, так и на отдельный вход управления.

Существуют различные версии импульсного реле с разным набором пар контактов NO (нормально открытыми), NC (нормально закрытыми), перекидными контактами и их различной комбинацией.

Рассмотрим работу схемы управления освещением с самой простой версией импульсного реле с одной NO парой контактов.

Схема управления освещением при помощи импульсного реле

Силовая цепь питания светильников состоит из автоматического выключателя QF1 и контактов импульсного реле KI1. Управление импульсным реле осуществляется кнопочными (нажимными) выключателями SB1, SB2… подключенными параллельно на клеммы X1:1 и X1:2.

В начальном положении контакты реле KI1 разомкнуты (NO). При нажатии на кнопку SB её контакты 1 и 2 замыкаются и на катушку реле поступает управляющий импульс. Реле меняет положение контактов — силовая цепь замыкается, освещение включается.

Повторное нажатии на кнопку SB подаст на катушку реле ещё один импульс и реле опять сменит состояние контактов — силовая цепь разомкнётся, освещение отключится.

Как видим, применяя данную схему можно существенно сэкономить на кабеле и монтажных работах.

Схемы с использованием импульсного реле для управления освещением применяют в жилых, общественных и промышленных зданиях.

Планирование домашней электрики

Чтобы в процессе эксплуатации электронной техники и подключения ее из различных электрических точек не приводило к постоянным перезакладкам элементов сетей, чтобы не приходилось постоянно штробить стены квартиры, специалисты рекомендуют работы по обустройству электросети начинать с составления схемы электроснабжения. Пример схемы разводки и подключения электрооборудования можно увидеть на рисунке 1.

Такой чертеж, схему формируют «обратным порядком»: первоначально на план квартиры наносят всю используемую осветительную аппаратуру, силовую технику; далее, на основании мощностных расчетов, выбирают схему разводки проводников, сечение проводов, защитные устройства.

Общие положения

Для начала разберемся с общими правилами  прокладки электропроводки. Электрические провода и кабеля должны прокладываются строго вертикально, либо строго горизонтально с углами поворота 90о. На схеме ниже наглядно представлена схема прокладки проводки со всеми рекомендуемыми  отступами, а так же рекомендуемой высотой установки выключателей и розеток:

Стоит сразу отметить, что монтаж проводки можно выполнять двумя способами: открыто либо скрыто:

Открытая прокладка электропроводки является наиболее простым и недорогим решением, так же одним из плюсов данного типа электропроводки кроме простоты и дешевизны монтажа, является удобство ее ремонта, главным же минусом такой прокладки считается нарушение внешнего вида интерьера помещения. Обычно такая проводка выполняется одним из трех способов: в коробе (кабель-канале), на скобах, гофре (или металлорукаве), либо в ПВХ трубах.

Прокладка в коробе прокладка на скобах в гофре

Монтаж скрытой электропроводки — это более трудоемкий процесс, при котором электрическая проводка прячется под обшивку стен, либо укладывается в штробы:

Главным преимуществом такого способа прокладки электропроводки является сохранение внешнего вида интерьера, а кроме того обеспечивается хорошая защита электропроводки от механических повреждений (хотя конечно просверлить ее или пробить гвоздем вешая картину все же можно). Недостатками являются — трудоемкость монтажа и сложность ремонта такой проводки, кроме того такой способ прокладки, как правило, обходится дороже.

Розетки, выключатели, разветвительные коробки и электрощитки так же имеют 2 типа исполнения: для открытой и для внутренней (скрытой) установки:

Составление схемы электропроводки

Оговоримся сразу: речь идет об однофазной сети с напряжением 220 вольт, которая уже подведена к частному дому площадью 100—150 м² или квартире. Проектированием и монтажом трехфазных электросетей на 380 В для больших загородных коттеджей занимаются специализированные организации. В этом случае самостоятельно браться за разводку электрики не имеет смысла, поскольку без проекта электроснабжения и согласованной исполнительной документации управляющая компания не позволит осуществить подключение к своим коммуникациям.

Итак, изображенная выше типовая схема электропроводки для жилого здания включает в себя такие элементы (начиная от ввода кабеля):

  • вводной автоматический выключатель номиналом 25 ампер;
  • электрический счетчик (желательно – многотарифный);
  • устройство защитного отключения — УЗО, рассчитанное на ток срабатывания 300 мА;
  • дифференциальный автомат на 20 А, срабатывающий при токе утечки 30 мА, — для защиты розеточной сети;
  • автоматические выключатели номиналом 10 А на освещение (количество зависит от числа линий к светильникам);
  • электромонтажный шкаф, снабженный нулевой и заземляющей шиной, а также DIN-рейками для крепления автоматов и УЗО:
  • кабельные линии с распределительными коробками, ведущие к розеткам для подключения бытовой техники и осветительным приборам.

Функциональное назначение перечисленных элементов следующее. Автоматические выключатели защищают ветви или систему в целом от короткого замыкания, УЗО предохраняет вас от поражения током, а дифференциальный автомат совмещает 2 эти функции. Последний должен устанавливаться на каждую силовую линию. Чтобы уберечь домашние электроприборы от перепадов напряжения, можете дополнить схему защитным реле, устанавливаемым после главного УЗО, как об этом рассказывает мастер на видео:

Чтобы сделать полную схему электрификации, нужно от руки начертить план дома и разместить на нем осветительные приборы с розетками. Укажите местонахождение электрощита и раскиньте от него проводку вдоль стен, отмечая каждую пару (фаза и ноль) одной линией, как это делают электрики (называется – однолинейная схема). Пример такого эскиза изображен на картинке.

Архивы статей

Архивы статейВыберите месяц Сентябрь 2021  (4) Август 2021  (4) Июль 2021  (5) Июнь 2021  (4) Май 2021  (5) Апрель 2021  (5) Март 2021  (4) Февраль 2021  (5) Январь 2021  (5) Декабрь 2020  (6) Ноябрь 2020  (5) Октябрь 2020  (6) Сентябрь 2020  (6) Август 2020  (5) Июль 2020  (4) Июнь 2020  (5) Май 2020  (5) Апрель 2020  (7) Март 2020  (5) Февраль 2020  (5) Январь 2020  (6) Декабрь 2019  (5) Ноябрь 2019  (6) Октябрь 2019  (5) Сентябрь 2019  (4) Август 2019  (5) Июль 2019  (5) Июнь 2019  (5) Май 2019  (6) Апрель 2019  (7) Март 2019  (8) Февраль 2019  (6) Январь 2019  (7) Декабрь 2018  (8) Ноябрь 2018  (5) Октябрь 2018  (7) Сентябрь 2018  (7) Август 2018  (7) Июль 2018  (7) Июнь 2018  (6) Май 2018  (7) Апрель 2018  (7) Март 2018  (7) Февраль 2018  (7) Январь 2018  (8) Декабрь 2017  (9) Ноябрь 2017  (8) Октябрь 2017  (9) Сентябрь 2017  (9) Август 2017  (7) Июль 2017  (8) Июнь 2017  (7) Май 2017  (10) Апрель 2017  (8) Март 2017  (8) Февраль 2017  (7) Январь 2017  (6) Декабрь 2016  (10) Ноябрь 2016  (7) Октябрь 2016  (5) Сентябрь 2016  (7) Август 2016  (9) Июль 2016  (8) Июнь 2016  (8) Май 2016  (7) Апрель 2016  (7) Март 2016  (7) Февраль 2016  (6) Январь 2016  (8) Декабрь 2015  (7) Ноябрь 2015  (8) Октябрь 2015  (8) Сентябрь 2015  (8) Август 2015  (5) Июль 2015  (6) Июнь 2015  (10) Май 2015  (6) Апрель 2015  (10) Март 2015  (8) Февраль 2015  (9) Январь 2015  (11) Декабрь 2014  (10) Ноябрь 2014  (9) Октябрь 2014  (8) Сентябрь 2014  (13) Август 2014  (10) Июль 2014  (8) Июнь 2014  (6) Май 2014  (7) Апрель 2014  (8) Март 2014  (21) Февраль 2014  (13) Январь 2014  (14) Декабрь 2013  (11) Ноябрь 2013  (16) Октябрь 2013  (12) Сентябрь 2013  (13) Август 2013  (11) Июль 2013  (10) Июнь 2013  (11) Май 2013  (14) Апрель 2013  (10) Март 2013  (11) Февраль 2013  (11) Январь 2013  (18) Декабрь 2012  (23) Ноябрь 2012  (25) Октябрь 2012  (31) Сентябрь 2012  (32) Август 2012  (33) Июль 2012  (16) Июнь 2012  (15) Май 2012  (32) Апрель 2012  (44) Март 2012  (49) Февраль 2012  (44) Январь 2012  (34) Декабрь 2011  (5)

Схема мощного тиристорного регулятора напряжения

Cхемы электронных устройств

 С помощью этого устройства можно регулировать напряжения от несколько десятков вольт до 220 В, при активной нагрузке.

Тринисторы VS1 и VS2 подключены параллельно между собой, на встречу друг к другу и последовательно к нагрузке. При включении тринисторы закрыты, через R5 происходит зарядка конденсаторов C1, C2. Конденсаторы C1, C2  и переменный резистор R5 образуют фазосдвигающую цепочку.

Динисторы VS3 и VS4 образуют импульсы, с помощью которых происходит управление тринисторами.

В тот момент когда конденсаторы зарядятся напряжением равным напряжению открытия динистора, произойдет скачок напряжения который включит тринистор и через нагрузку потечет ток. В начале отрицательного полупериода напряжения сети, происходит отключение данного тринистора и происходит новый цикл зарядки конденсаторов, но уже в обратной полярности. Происходит открытие другого тринистера и динистора.

Используемые детали

  • R1, R2, R3, R4 — 51 Ом
  • R5 — 270 кОм
  • VS1 — КУ202Н
  • VS2 — КУ202Н
  • VS3 — КН102А
  • VS4 — КН102Н
  • C1 — 0,25 мкФ
  • C2 — 0,25 мкФ

Установив VS1 и VS2 на радиаторы, можно увеличить нагрузку до 1,5 кВт.

Конденсаторы необходимо использовать рассчитанные на напряжение не менее 300 В.

В схеме можно использовать динисторы КН102Б  но при этом нужно уменьшить емкость конденсаторов до 0,2 мкФ или КН102В — ёмкость уменьшить до 0,15 мкФ. Переменный резистор типа СП2-2-1

Дальше »

Описание панели инструментов для рисования электрических схем.

Таблицы входных и выходных цепей могут быть выполнены разнесенным способом см. Общие точки соединений нескольких элементов на схеме имеют один и тот же номер. Порядок расположения контактов в таблице определяется удобством построения схемы. Программа XL Pro распространяется бесплатно и доступна для загрузки зарегистрированными пользователями Extranet.

Рисунок 2.

На электрической принципиальной схеме показываются все электрические связи между входящими в нее элементами электрооборудования производственного механизма. Программа бесплатна, но так же как и в случае с Legrand она отсутствует в свободном доступе.

Есть демоверсия с ограничениями.

Форматы листов схем выбирают в соответствии с требованиями, установленными ГОСТ 2. Схема электрическая принципиальная Однако перед нами встаёт небольшая проблема: а никаких, собственно, электронных элементов мы и не знаем… Что, например, за прямоугольники или параллельные черточки нарисованы на рисунке 7.

В настоящей учебной работе этот этап не рассматривается Далее следуют два тесносвязанных этапа — компоновка размещение компонентов на ПП и разводка трассировка электрических связей согласно принципиальной схеме.

Основные процедуры создания электрической схемы в Schematic p-cad. EasyEDA — Сервис по созданию электронных схем и печатных плат онлайн

Читайте дополнительно: Можно ли самому ремонтировать электрику

Схема простого металлоискателя

Самые простые электронные схемы базируются на одной микросхеме, в случае этой на TDA0161 – специализированном изделии для датчиков на основе индукции. На основе таких собирают детекторы металла, реагирующие при приближении к индукционному датчику.

Такие в некоторых случаях стоят на заводских проходных.

Детали для его сборки можно найти в магазине радиозапчастей или на алиэкспрессе. В данной схеме металлодетектр издает звук только тогда, когда обнаружит металл. Микросхема работает в диапазоне от 3,5 до 15 вольт, при поиске потребляет ток около 1 мА, в сигнальном режиме 8-12 мА, при рабочей частоте 8-10 кГц.

Запитать устройство можно с помощью телефонного аккумулятора. Также для металлоискателя понадобится «рабочий орган» в виде катушки на 140-150 витков медной проволоки, диаметром 5-7 см. При этом чувствительность прямо зависит от диаметра катушки – чем больше охват, тем чувствительнее.

Аппарат должен работать сразу после сборки, единственное в чем нуждается – в калибровке порога срабатывания переменным резистором.

Электрические схемы. Типы. Правила выполнения

Полупроводниковые приборы. Составные части изделия изображают в виде упрощенных внешних очертаний, а их расположение должно примерно соответствовать действительному размещению [2, п.

Схема электрических соединений или ее еще называют монтажная схема, представляет собой упрощенный конструктивный чертеж, изображающий электрическое устройство в одной или нескольких проекциях, на котором показываются электрические соединения деталей между собой. Другой тип принципиальных схем отражает управление приводом, линией, защиту, блокировки, сигнализацию. На таких схемах провода идущие в одном направлении часто объединяют в жгуты или пучки и показывают одной толстой линией.

На схеме проводки квартиры будет видно размещение розеток, светильников и т. На наличие соединения указывает точка в месте пересечения или примыкания.

На таких схемах может быть показаны схемы нескольких типов, например электрическая принципиальная и монтажная, или принципиальная и схема расположения. Кстати, монтажной также считается электросхема соединений, которая предназначена для подключения электрооборудования, а также соединения установок между собой в пределах одной цепи.

Типы и виды электрических схем: общая класификация

Основание подвижной части отмечается специальной незаштрихованной точкой. Схемы обычно дополняются различными диаграммами и таблицами переключения контактов, которые поясняют порядок срабатывания сложных элементов, например многопозиционных переключателей, временными диаграммами, показывающими последовательность срабатывания катушек реле. В люстре один провод стал общим. Благодаря ей любую неисправность можно обнаружить и устранить в очень короткое время. Ниже будут рассмотрены схемы принципиальные, соединений и подключений как получившие наиболее широкое применение в электрооборудовании промышленных предприятий.

Это может быть либо отключение автомата 2-QF, либо отключение катушки 2-КМ, которая включается релейной схемой. Участки цепи, вдоль которых протекают одни и те же токи, называются ветвями. Существует несколько вариантов выполнения схем соединения и подключения. Теперь следует разобраться, для чего предназначена каждая конкретная электросхема, и из чего она состоит. На таком чертеже должны обязательно быть указаны все функциональные узлы цепи и вид связи между ними.

Виды заземления нейтрали

Управление освещением с использованием фотореле

Фотореле (сумеречное реле, сумеречный выключатель) используют для управления наружным (уличным, декоративным) освещением. Фотореле состоит из двух частей: самого реле, устанавливаемого в щит, и выносного датчика освещенности.

Рассмотрим работу схемы управления наружным освещением на базе самой простой версии фотореле, реагирующей только на уровень освещенности.

Датчик освещенности (фотодатчик) BL1 подаёт сигнал на фотореле KL1 пропорционально уровню освещённости. При снижении уровня освещённости ниже заданного, фотореле KL1 замыкает свою пару контактов. Силовая цепь замыкается, включается наружное освещение. При повышении уровня освещенности выше заданного, фотореле KL1  размыкает свою пару контактов и наружное освещение отключается.

Управление наружным освещением при помощи фотореле. Базовая схема

В линейках ведущих производителей представлено несколько вариаций фотореле:

  • Самая простая версия — фотореле реагирует только на уровень освещенности. Реле комплектуется фотодатчиком;
  • Версия с возможностью задать программу включения (одну или несколько). Фотореле замыкает и размыкает свои контакты в зависимости от уровня освещенности и в соответствии с заданной программой. Реле комплектуется фотодатчиком;
  • Астрореле. Реле фотодатчиком не комплектуется. Управление включение осуществляется по заданным программам. Время восхода и заката реле определяет автоматически в зависимости от заданных географических высоты, долготы и астрономического времени.

Как видим, по своему функционалу программируемые фотореле являются своего рода реле времени с дополнительными функциями.

На практике базовая схема управления наружным освещением обычное не применяется, т.к. необходимо одновременно включать сразу несколько групповых линий. Установка на каждую групповую линию фотореле нецелесообразно как с экономической точки зрения, так и с точки зрения здравого смысла. Поэтому в щитах наружного освещения и шкафах управления наружным освещением устанавливают одно фотореле, которое управляет питанием катушек контакторов, замыкающих силовые цепи.

Рассмотрим работу доработанной версии схемы управления наружным освещением.

Управление наружным освещением при помощи фотореле и контакторов

Питание на катушки контакторов 1KM1, 2KM1, 3KM1 подаётся через трехпозиционный переключатель SA1 с нейтральным положением:

  • В положении «Ручное» питание напрямую подаётся на катушки контакторов KM и они замыкают свои пары контактов, наружное освещение включается вне зависимости от уровня освещённости
  • В положении «0» цепь питания катушек контакторов разорвана и наружное освещение отключено вне зависимости от уровня освещённости
  • В положении «Автомат» питание на катушки контакторов подаётся через контакты фотореле KL1. Включением и отключением наружного освещения управляет фотореле, замыкая и размыкая свои контакты в зависимости от уровня освещённости.

При необходимости, можно дополнить схему сигнальной лампой HL, включенной параллельно катушкам контакторов, которая будет информировать о включении наружного освещения.

Фотореле с несколькими программами имеет количество пар контактов в соответствии с количеством предусмотренных программ. Таким образом, можно запрограммировать несколько групп включения наружного освещения.