Оглавление
- Внутреннее строение транзистора с управляющим PN-переходом
- Полевые транзисторы с изолированным затвором (МДП-транзисторы)
- Почему транзистор – полевой?
- Р-канальный JFET-транзистор с изолированным PN-переходом
- Биполярные транзисторы
- Потери на проводимость полевого транзисторного ключа
- Виды транзисторов
- Работа с микроконтроллерами
- Расчёт транзисторного ключа
- Расчет транзисторного ключа
- Обозначение линий связи на электрических схемах
- Полевые транзисторы с управляющим p-n переходом
- Заключение
Внутреннее строение транзистора с управляющим PN-переходом
Для того, чтобы проверить полевой транзистор с управляющим PN-переходом, достаточно вспомнить его внутреннее строение.
N-канальный выглядит вот так:
А P-канальный вот так:
Теперь давайте вспомним, какой радиоэлемент у нас состоит из ? Все верно, это диод. Получается что Затвор и Исток образуют один диод, а Затвор и Сток – другой диод. Сам канал обладает каким-то сопротивлением, а это есть нечто иное как резистор.
Для N-канального транзистора
Эквивалентная схема будет выглядеть вот так:
Для P-канального
Эквивалентная схема будет выглядеть вот так:
Получается, для того, чтобы узнать целостность транзистора, нам достаточно проверить все эти три элемента 😉
Полевые транзисторы с изолированным затвором (МДП-транзисторы)
Термин «МДП-транзистор» используется для обозначения полевых транзисторов, в которых управляющий электрод – затвор – отделен от активной области полевого транзистора диэлектрической прослойкой – изолятором. Основным элементом для этих транзисторов является структура металл-диэлектрик-полупроводник (М-Д-П).
Технология МДП-транзистора с встроенным затвором приведена на рисунке:
Исходный полупроводник, на котором изготовлен МДП-транзистор, называется подложкой (вывод П). Две сильнолегированные области n+ называется истоком (И) и стоком (С). Область подложки под затвором (З) называется встроенным каналом (n-канал).
Физической основой работы полевого транзистора со структурой металл-диэлектрик-полупроводник является эффект поля. Эффект поля состоит в том, что под действием внешнего электрического поля изменяется концентрация свободных носителей заряда в приповерхностной области полупроводника. В полевых приборах со структурой МДП внешнее поле обусловлено приложенным напряжением на металлический электрод-затвор. В зависимости от знака и величины приложенного напряжения могут быть два состояния области пространственного заряда (ОПЗ) в канале – обогащение, обеднение.
Режиму обеднения соответствует отрицательное напряжение Uзи, при котором концентрация электронов в канале уменьшается, что приводит к уменьшению тока стока. Режиму обогащения соответствует положительное напряжение Uзи и увеличение тока стока.
ВАХ представлена на рисунке:
Топология МДП-транзистора с индуцированным (наведенным) каналом р-типа приведена на рисунке:
При Uзи = 0 канал отсутствует и Ic = 0. Транзистор может работать только в режиме обогащения Uзи < 0. Если отрицательное напряжение Uзи превысит пороговое Uзи.пор, то происходит формирование инверсионного канала. Изменяя величину напряжения на затворе Uзи в области выше порогового Uзи.пор, можно менять концентрацию свободных носителей в инверсионном канале и сопротивление канала. Источник напряжения в стоковой цепи Uси вызовет ток стока Iс.
ВАХ представлена на рисунке:
В МДП-транзисторах затвор отделен от полупроводника слоем окисла SiO2. Поэтому входное сопротивление таких транзисторов порядка 1013…1015 Ом.
К основным параметрам полевых транзисторов относятся:
- Крутизна характеристики при Uсп = const, Uпи = const. Типичные значения параметра (0,1…500) мА/В;
- Крутизна характеристики по подложке при Uсп = const, Uзи = const. Типичные значения параметра (0.1…1) мА/В;
- Начальный ток стока Iс.нач. – ток стока при нулевом значении напряжения Uзи. Типичные значения параметра: (0,2…600) мА – для транзисторов с управляющим каналом p-n переходом; (0,1…100) мА – для транзисторов со встроенным каналом; (0,01…0,5) мкА – для транзисторов с индуцированным каналом;
- Напряжение отсечки Uзи.отс.. Типичные значения (0,2…10) В; пороговое напряжение Uп. Типичные значения (1…6) В;
- Сопротивление сток-исток в открытом состоянии. Типичные значения (2..300) Ом
- Дифференциальное сопротивление (внутреннее): при Uзи = const;
- Статистический коэффициент усиления: μ = S · ri
Почему транзистор – полевой?
Слово «транзистор» образовано от двух английских слов translate и resistor, то есть, иными словами, это преобразователь сопротивления.
Среди всего многообразия транзисторов есть и полевые, т.е. такие, которые управляются электрическим полем.
Электрическое поле создается напряжением. Таким образом, полевой транзистор – это полупроводниковый прибор, управляемый напряжением.
В англоязычной литературе используется термин MOSFET (MOS Field Effect Transistor). Есть другие типы полупроводниковых транзисторов, в частности, биполярные, которые управляются током. При этом на управление затрачивается и некоторая мощность, так как к входным электродам необходимо прикладывать некоторое напряжение.
Канал полевого транзистора может быть открыт только напряжением, без протекания тока через входные электроды (за исключением очень небольшого тока утечки). Т.е. мощность на управление не затрачивается. На практике, однако, полевые транзисторы используются большей частью не в статическом режиме, а переключаются с некоторой частотой.
Конструкция полевого транзистора обуславливает наличие в нем внутренней переходной емкости, через которую при переключении протекает некоторый ток, зависящий от частоты (чем больше частота, тем больше ток). Так что, строго говоря, некоторая мощность на управление все-таки затрачивается.
Р-канальный JFET-транзистор с изолированным PN-переходом
Но есть также и P-канальный полевой транзистор с управляющим P-N переходом. Как вы уже догадались из названия, его канал сделан и полупроводника P-типа. Его внутреннее строение выглядит вот так:
На схемах обозначается так:
Обратите внимания на стрелочку по сравнению с N-канальным транзистором.
Принцип его действия точно такой же, просто основными носителями заряда будут являться уже дырки. Следовательно, все напряжения в схеме меняем на противоположные:
Также не забываем, что вывод, откуда начинают движение основные носители (как вы помните в P полупроводнике это дырки), называется ИСТОКОМ.
Биполярные транзисторы
Определение «биполярный» указывает на то, что работа транзистора связана с процессами, в которых принимают участие носители заряда двух типов — электроны и дырки.
Транзистором называется полупроводниковый прибор с двумя электронно-дырочными переходами, предназначенный для усиления и генерирования электрических сигналов. В транзисторе используются оба типа носителей – основные и неосновные, поэтому его называют биполярным.
Биполярный транзистор состоит из трех областей монокристаллического полупроводника с разным типом проводимости: эмиттера, базы и коллектора.
- Э — эмиттер,
- Б — база,
- К — коллектор,
- ЭП — эмиттерный переход,
- КП — коллекторный переход,
- W — толщина базы.
Каждый из переходов транзистора можно включить либо в прямом, либо в обратном направлении. В зависимости от этого различают три режима работы транзистора:
- Режим отсечки – оба p-n перехода закрыты, при этом через транзистор обычно идет сравнительно небольшой ток
- Режим насыщения – оба p-n перехода открыты
- Активный режим – один из p-n переходов открыт, а другой закрыт
В режиме отсечки и режиме насыщения управление транзистором невозможно. Эффективное управление транзистором осуществляется только в активном режиме. Этот режим является основным. Если на эмиттерном переходе напряжение прямое, а на коллекторном – обратное, то включение транзистора считают нормальным, при противоположной полярности – инверсным.
В нормальном режиме коллекторный p-n переход закрыт, эмиттерный – открыт. Ток коллектора пропорционален току базы.
Движение носителей заряда в транзисторе n-p-n типа показано на рисунке:
При подключении эмиттера к отрицательному зажиму источника питания возникает эмиттерный ток Iэ. Так как внешнее напряжение приложено к эмиттерному переходу в прямом направлении, электроны преодолевают переход и попадают в область базы. База выполнена из p-полупроводника, поэтому электроны являются для неё неосновными носителями заряда.
Электроны, попавшие в область базы, частично рекомбинируют с дырками базы. Однако базу обычно выполняют очень тонкой из p-проводника с большим удельным сопротивлением (малым содержанием примеси), поэтому концентрация дырок в базе низкая и лишь немногие электроны, попавшие в базу, рекомбинируют с её дырками, образуя базовый ток Iб. Большинство же электронов вследствие теплового движения (диффузия) и под действием поля коллектора (дрейф) достигают коллектора, образуя составляющую коллекторного тока Iк.
Связь между приращениями эмиттерного и коллекторного токов характеризуется коэффициентом передачи тока
Как следует из качественного рассмотрения процессов, происходящих в биполярном транзисторе, коэффициент передачи тока всегда меньше единицы. Для современных биполярных транзисторов α = 0,9 ÷ 0,95
При Iэ ≠ 0 ток коллектора транзистора равен:
В рассмотренной схеме включения базовый электрод является общим для эмиттерной и коллекторной цепей. Такую схему включения биполярного транзистора называют схемой с общей базой, при этом эмиттерную цепь называют входной, а коллекторную – выходной. Однако такую схему включения биполярного транзистора применяют очень редко.
Потери на проводимость полевого транзисторного ключа
Оценим потери на силовом ключе в открытом состоянии (потери на проводимость). Все эти потери рассеиваются силовым ключом в виде тепловой мощности. В справочнике по мощному полевому транзистору Вы найдете сопротивление сток — исток в открытом состоянии (RDS(ON)). В комментарии к этой величине приводится режим измерения, а именно управляющее напряжение и ток стока. Мы всегда будем выбирать управляющее напряжение выше или равное приведенному в режиме измерения. Так что потери можно оценить сверху по формуле:
[Потери на проводимость, Вт] = [Время в открытом состоянии, с] / ([Время в открытом состоянии, с] + [Время в закрытом состоянии, с]) * [Сопротивление сток — исток в открытом состоянии, Ом] * [Сила тока в открытом состоянии, А] ^ 2
Обратите внимание, в формуле используется сила тока в открытом состоянии, а не средняя сила тока. Так как зависимость мощности от силы тока квадратичная, то простое усреднение неприменимо
Полученная величина в сумме с потерями на переключение не должна превышать максимально допустимую рассеиваемую мощность полевого транзистора с учетом системы его охлаждения. В справочниках приводится максимальная мощность при условии идеального охлаждения. Чтобы точно оценить достаточность мощности силового транзистора, нужно рассчитать потери на переключение. Об этом будет отдельная статья. Подпишитесь на новости, чтобы не пропустить.
Кроме того, нам важно знать максимально допустимый импульсный ток и максимально допустимую периодически выделяемую энергию. Действительно, если у Вас транзистор открывается на очень короткое время, то средняя рассеиваемая мощность будет невелика, но импульсный ток может превысить допустимые значения
Если время в открытом состоянии среднее, то и мощность и максимально допустимый импульсный ток могут быть в норме, но может зашкалить импульсно выделенная энергия.
[Выделенная энергия, Дж] = [Время в открытом состоянии, с] * [Сопротивление сток — исток в открытом состоянии, Ом] * [Сила тока в открытом состоянии, А] ^ 2
Вообще эти расчеты довольно замысловатые. Я обычно, если нет каких-то особых требований по габаритам устройства и применяемым элементам, применяю простое соображение. Средний ток не должен превышать максимально допустимый постоянный ток в открытом состоянии, а максимально возможный импульсный ток не должен превышать удвоенную эту величину.
(читать дальше…) :: (в начало статьи)
1 | 2 | 3 |
:: ПоискТехника безопасности :: Помощь
К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.
Если что-то непонятно, обязательно спросите!Задать вопрос. Обсуждение статьи. сообщений.
Я собрал уже вторую схему Алмаг 1. При включении выходные ирф640 мгновенно сильно нагреваются под нагрузкой катушек магнитов. Без катушек нагрева нет, а в телефоне поставленном вместо магнита слышен низкочастотный треск работающего генератора. В деталях и монтаже брака не обнаружил. Пожалуйста объясните в чем может быть причина и как устранить устранить нагрев. Первый вариан Читать ответ…
Еще статьи
Импульсный источник питания. Своими руками. Самодельный. Сделать. Лабо…
Схема импульсного блока питания. Расчет на разные напряжения и токи….
Плавная регулировка, изменение яркости свечения светодиодов. Регулятор…
Плавное управление яркостью свечения светодиодов. Схема устройства с питанием ка…
Зарядное устройство. Импульсный автомобильный зарядник. Зарядка аккуму…
Схема импульсного зарядного устройства. Расчет на разные напряжения и токи….
Бесперебойник своими руками. ИБП, UPS сделать самому. Синус, синусоида…
Как сделать бесперебойник самому? Чисто синусоидальное напряжение на выходе, при…
Преобразователь однофазного в трехфазное. Конвертер одной фазы в три. …
Схема преобразователя однофазного напряжения в трехфазное….
Пушпульный импульсный преобразователь напряжения, источник питания
Вы…
Как выбрать частоту работы контроллера и скважность для пуш-пульного преобразова..
Бестрансформаторные источники питания, преобразователи напряжения без …
Обзор схем бестрансформаторных источников питания…
Простой импульсный прямоходовый преобразователь напряжения. 5 — 12 вол…
Схема простого преобразователя напряжения для питания операционного усилителя….
Виды транзисторов
Каждая из ветвей отличается на 0.
Изображение схем подключения полевых триодов Практически каждая схема способна работать при очень низких входных напряжениях. Схема включения MOSFET Традиционная, классическая схема включения «мосфет», работающего в режиме ключа открыт-закрыт , приведена на рис 3.
Испытания показали, что транзисторный ключ прекрасно работает, подавая напряжение на нагрузку. Транзисторы управляются напряжением, и в статике не потребляют ток управления.
Если к такому транзистору приложить напряжение, к стоку плюс, а к истоку минус, через него потечет ток большой величины, он будет ограничен только сопротивлением канала, внешними сопротивлениями и внутренним сопротивлением источника питания. Это значит что нужно этого избежать, введя каскад с высоким входным сопротивлением. Среди них можно выделить: биполярные транзисторы с внедрёнными и их схему резисторами; комбинации из двух триодов одинаковых или разных структур в одном корпусе; лямбда-диоды — сочетание двух полевых триодов, образующих участок с отрицательным сопротивлением; конструкции, в которых полевой триод с изолированным затвором управляет биполярным триодом применяются для управления электромоторами. Чтобы на резисторе Rи не выделялась переменная составляющая напряжения, его шунтируют конденсатором Си.
Каскад с общим истоком дает очень большое усиление тока и мощности. Разница потенциалов достигает величины от 0,3 до 0,6 В. Только вот стрелки на условном изображении полевых транзисторов имеют направление, прямо противоположное своим биполярным аналогам.
Это значит что нужно этого избежать, введя каскад с высоким входным сопротивлением. Стабильность при изменении температуры. При некотором напряжении Uси происходит сужение канала, при котором границы обоих р-n- переходов сужаются и сопротивление канала становится высоким. Это возможно благодаря тому, что не используется инжекция неосновных носителей заряда.
Принцип работы триода При обесточивании базы транзистор очень быстро приходит в первоначальное состояние и коллекторный переход закрывается. Поэтому использование такого подхода на практике сильного ограничено в усилительной технике.
Также сюда подключается и усилитель колебаний. Функцию затвора исполняет металлический вывод, который отделяется от кристалла слоем диэлектрика и, таким образом, электрически с ним не контактирует. Защита от переполюсовки на основе полевого транзистора
Работа с микроконтроллерами
При расчете транзисторного ключа нужно учитывать все особенности работы элемента. Для того чтобы работала система управления на микроконтроллере, используются усилительные каскады на транзисторах. Проблема в том, что выходной сигнал у контроллера очень слабый, его не хватит для того, чтобы включить питание на обмотку электромагнитного реле (или же открыть переход очень мощного силового ключа). Лучше применить биполярный транзисторный ключ, которым произвести управление MOSFET-элементом.
Применяются несложные конструкции, состоящие из таких элементов:
- Биполярный транзистор.
- Резистор для ограничения входного тока.
- Полупроводниковый диод.
- Электромагнитное реле.
- Источник питания 12 вольт.
Диод устанавливается параллельно обмотке реле, он необходим для того, чтобы предотвратить пробой транзистора импульсом с высоким ЭДС, который появляется в момент отключения обмотки.
Сигнал управления вырабатывается микроконтроллером, поступает на базу транзистора и усиливается. При этом происходит подача питания на обмотку электромагнитного реле – канал «коллектор — эмиттер» открывается. При замыкании силовых контактов происходит включение нагрузки. Управление транзисторным ключом происходит в полностью автоматическом режиме – участие человека практически не требуется. Главное – правильно запрограммировать микроконтроллер и подключить к нему датчики, кнопки, исполнительные устройства.
Расчёт транзисторного ключа
Рейтинг: 5 / 5
- Подробности
- Категория: Практические советы
- Опубликовано: 27.11.2019 13:45
- Просмотров: 2513
Для транзисторного ключа не нужно рассчитывать точное значение коэффициента усиления. При слишком большом коэффициенте усиления транзистор переходит в режим ограничения тока и выходной ток будет определяться сопротивлением нагрузки. Поэтому достаточно определить только минимальный коэффициент усиления по току. Рассчитаем этот коэффициент. Пусть для индикаторной лампы требуется ток 120 мА, а цифровая микросхема может выдать ток единицы около 4 мА (этот ток определяется по справочнику или datasheet на выбранную микросхему). Тогда минимальный коэффициент усиления h21э можно определить по формуле:
h21э=Iк/Iб Iк — ток колектора Iб — ток базы В нашем случае ток коллектора равен току, протекающему через лампу, а ток базы — это максимальный допустимый выходной ток цифровой микросхемы (Iвых1). Делим 120 мА на 4 мА. Получаем минимальный коэффициент усиления по току, равный 30. То есть в данном случае подойдёт практически любой маломощный транзистор, например КТ3107
Теперь следует обратить внимание на то, что транзистор управляется током, а цифровая микросхема является генератором напряжения. В простейшем случае для преобразования напряжения в ток можно использовать резистор
Эквивалентная схема подключения базовой цепи транзистора к цифровой ТТЛ микросхеме приведена на рисунке 1. Рисунок 1 – Эквивалентная схема подключения транзисторного ключа к цифровой ТТЛ микросхеме В приведенной схеме ток базы транзистора задаёт резистор R1. Рассчитаем его сопротивление. Для этого необходимо определить падение напряжения на этом резисторе. Минимальное напряжение высокого уровня на выходе ТТЛ микросхемы при максимальном допустимом токе единицы равно 2,4 В. Падение напряжения на базовом переходе транзистора можно считать постоянным и для кремниевых транзисторов равным 0,7 В. Тогда падение напряжения на сопротивлении R1 можно определить по формуле: UR1=U1-Uб=2,4В-0,7В=1,7В . Так как к цифровому выходу подключен только транзисторный ключ, то зададимся максимально возможным током цифровой микросхемы 4 мА. Тогда по закону Ома можно определить сопротивление резистора R1 как отношение падения напряжения на этом резисторе к току, протекающему через него: R1 = 1,7В/4мА = 425 Ом . При выборе резистора из 10% шкалы можно взять резистор 510 Ом (больше чем рассчитали, чтобы не превысить допустимый ток цифровой микросхемы). При работе транзисторного ключа при комнатной температуре расчет на этом заканчивается. Если же предполагается работа транзисторного ключа при повышенных температурах, то транзистор может самопроизвольно открываться обратным током коллектора. Эквивалентная схема цепи протекания этого тока приведена на рисунке 2. Рисунок 2 – Эквивалентная схема цепи протекания обратного коллекторного тока В схеме, приведённой на рисунке 9.7, видно, что на резисторе R1 обратный ток коллектора транзистора VT1 может создать падение напряжения 0,7 В и, тем самым, открыть транзистор. Для того чтобы уменьшить падение напряжения можно параллельно этому резистору подключить еще один резистор (как показано на рисунке 3) и, тем самым, уменьшить открывающее напряжение на базе транзистора. Рисунок 3 – Эквивалентная схема шунтирования цепи протекания обратного коллекторного тока Iко транзисторного ключа резистором. В схеме, приведённой на рисунке 3, можно задаться током, протекающим через резистор R2 в режиме выдачи цифровой микросхемой единичного уровня. Пусть этот ток будет в три раза меньше базового тока транзистора. Тогда ток через резистор R2 будет равен: IR2=4 мА/3 =1,3 мА . Определим сопротивление резистора R2. Для этого воспользуемся законом Ома. Учитывая, что падение напряжения на базовом переходе транзистора является константой и равно 0,7 В. R2 = Uб/IR2 = 0,7В/1,3мА = 510 Ом В режиме выдачи цифровой микросхемой логического нуля сопротивления R1 и R2 соединяются параллельно, и в рассчитанном случае падение напряжения уменьшается вдвое. Обратите внимание, что схема на входе транзистора очень похожа на делитель напряжения, однако не является им. Если бы это был делитель напряжения, то напряжение на базе транзистора уменьшалось бы в два раза, однако на самом деле напряжение уменьшается значительно больше!
Оставлять комментарии могут только зарегистрированные пользователи
Расчет транзисторного ключа
Для понимания привожу пример расчета, можете подставить свои данные:
1) Коллектор-эмиттер — 45 В. Общая рассеиваемая мощность — 500 mw. Коллектор-эмиттер — 0,2 В. Граничная частота работы — 100 мГц. База-эмиттер — 0,9 В. Коллекторный ток — 100 мА. Статистический коэффициент передачи тока — 200.
Эти силовые элементы, представленные полупроводниками, резисторами, трансформаторами и катушками или конденсаторами, подвергаются зарядам, которые иногда могут их уничтожить. В случае нагрузок необходимо включать интенсивные токи, так что они больше не могут нормально функционировать. Эта температура чаще всего является основной причиной смерти этих компонентов, фактически пропуская ток 15 А в цепи, предусмотренной для 10 А, обязательно приведет к повышению температуры и повреждению схем и компонентов, что также может быть вызвано климатическими условиями, которые выводят из эксплуатации компоненты, поэтому военное оборудование должно выдерживать самые суровые условия, поскольку театры операций находятся в все регионы земного шара.
2) Резистор для тока 60 мА: 5-1,35-0,2 = 3,45.
3) Номинал сопротивления коллектора: 3,45\0,06=57,5 Ом.
4) Для удобства берём номинал в 62 Ом: 3,45\62=0,0556 мА.
5) Считаем ток базы: 56\200=0,28 мА (0,00028 А).
6) Сколько будет на резисторе базы: 5 — 0,9 = 4,1В.
7) Определяем сопротивление резистора базы: 4,1\0,00028 = 14,642,9 Ом.
Обозначение линий связи на электрических схемах
Но для их работы необходимо соблюдение целого ряда требований.
Найти на электрической схеме электродвигатели, определить их систему питания.
Не все контуры считаются электрическими цепями. Активный двухполюсник содержит источники электрической энергии, а пассивный двухполюсник их не содержит.
Такой выключатель реагирует на определённое слово или тон голоса. Какую нужно построить цепь, с двумя лампочками, чтобы можно было не зажигать ни одну из них, зажечь только одну или зажечь обе? Перед выполнением следующего задания хочется напомнить китайскую мудрость: Расскажи — и я забуду… Дай мне возможность действовать самому — и я научусь. Важным отличительным свойством элементов второго класса является наличие участка вольт-амперной характеристики, имеющего отрицательное сопротивление, что обеспечивает регенеративный лавинообразный переход таких элементов из выключенного состояния во включенное практически независимо от параметров входного переключающего сигнала. Зато на первый план выступает скорость переключения ключа, которая определяет число операций в единицу времени, т. В реальности такие идеальные источники не существуют, но практически их пытаются имитировать. Электродвигатели, лампы, плитки, всевозможные электробытовые приборы называют приёмниками или потребителями электрической энергии.
Схема электрической цепи – применение и классификация.
Дискретность разбиения определяется требуемой точностью аппроксимации и видом аппроксимируемой функции. Обсудить Редактировать статью Электротехнические устройства очень важны в жизни современного цивилизованного человека. На практике широко используются схемы замещения во время работы активных и пассивных элементов.
Выходные логические уровни, которые характеризуют цепи управления ключа и их совместимость с цифровыми ИС. Время установления выходного сигнала время, за которое выходной сигнал при переключении достигает установившегося значения с допустимой погрешностью на заданной нагрузке. Если использовать оба режима, которые были уже рассмотрены, то по их результатам могут быть определены параметры активного двухполюсника. Сложная цепь обладает, как правило, несколькими ветвями. Эта энергия восполняется в источнике тока.
В зависимости от значения источника тока низкий уровень или высокий транзистор должен быть в закрытом режим отсечки или насыщенном статическом состоянии. Элементы с такой характеристикой, используемые в электронике, весьма многочисленны и разнообразны, однако все они объединяются важнейшим качеством — способностью работать в ключевом режиме. Задача на закон сохранения энергии в электрической цепи
Полевые транзисторы с управляющим p-n переходом
Схематически полевой транзистор с управляющим p-n переходом можно представить в виде пластины, к торцам которой подключены электроды, исток и сток. На рис. показана структура и схема включения полевого транзистора с каналом n-типа:
В транзисторе с n-каналом основными носителями заряда в канале являются электроны, которые движутся вдоль канала от истока с низким потенциалом к стоку с более высоким потенциалом, образуя ток стока Ic. Между затвором и истоком приложено напряжение, запирающее p-n переход, образованный n-областью канала и p-областью затвора.
При подаче запирающего напряжения на p-n-переход Uзи на границах канала возникает равномерный слой, обедненный носителями заряда и обладающий высоким удельным сопротивлением. Это приводит к уменьшению проводящей ширины канала.
Изменяя величину этого напряжения, можно изменить сечение канала и, следовательно, изменять величину электрического сопротивления канала. Для полевого n-канального транзистора потенциал стока положителен по отношению к потенциалу истока. При заземленном затворе от стока к истоку протекает ток. Поэтому для прекращения тока на затвор нужно подать обратное напряжение в несколько вольт.
Значение напряжения Uзи, при котором ток через канал становится практически равен нулю, называется напряжением отсечки Uзап
Таким образом, полевой транзистор с затвором в виде p-n-перехода представляет собой сопротивление, величина которого регулируется внешним напряжением.
Полевой транзистор характеризуется следующей ВАХ:
Здесь зависимости тока стока Iс от напряжения при постоянном напряжении на затворе Uзи определяют выходные, или стоковые, характеристики полевого транзистора. На начальном участке характеристик Uси + |Uзи| < Uзап ток стока Iс возрастает с увеличением Uси. При повышении напряжения сток — исток до Uси = Uзап — |Uзи| происходит перекрытие канала и дальнейший рост тока Iс прекращается (участок насыщения). Отрицательное напряжение Uзи между затвором и истоком смещает момент перекрытия канала в сторону меньших значений напряжения Uси и тока стока Iс. Участок насыщения является рабочей областью выходных характеристик полевого транзистора. Дальнейшее увеличение напряжения Uси приводит к пробою р-n-перехода между затвором и каналом и выводит транзистор из строя.
На ВАХ Iс = f(Uзи) показано напряжение Uзап. Так как Uзи ≤ 0 p-n-переход закрыт и ток затвора очень мал, порядка 10-8…10-9 А, поэтому к основным преимуществам полевого транзистора, по сравнению с биполярным, относится высокое входное сопротивление, порядка 1010…1013 Ом. Кроме того, они отличаются малыми шумами и технологичностью изготовления.
Практическое применение имеют две основные схемы включения. Схема с общим истоком (рис. а) и схема с общим стоком (рис. б) , которые показаны на рисунке:
Заключение
И напоследок про название «электронные ключи». Дело в том, что состояние меняется под действием тока. А что он собой представляет? Верно, совокупность электронных зарядов. От этого и происходит второе название. Вот в целом и все. Как видите, принцип работы и схема устройства транзисторных ключей не является чем-то сложным, поэтому разобраться в этом — дело посильное. Следует заметить, что даже автору данной статьи для освежения собственной памяти потребовалось немного попользоваться справочной литературой. Поэтому при возникновении вопросов к терминологии предлагаю вспомнить о наличии технических словарей и проводить поиск новой информации про транзисторные ключи именно там.
Транзисторный ключ являются основным компонентом в импульсной преобразовательной технике. В схемах всех импульсных источников питания, которые практически полностью вытеснили трансформаторные источники питания, применяются транзисторные ключи. Примером таких источников питания являются компьютерные блоки питания, зарядные устройства телефонов, ноутбуков, планшетов и т. п. Транзисторные ключи пришли на смену электромагнитных реле, поскольку обладают таким основным преимуществом как отсутствие механических подвижных частей в результате чего увеличивается надежность и долговечность ключа. Кроме того скорость включения и выключения электронных полупроводниковых ключей значительно выше скорости электромагнитных реле.
Также транзисторный ключ часто используется для включения-выключения (коммутации) нагрузки значительной мощности по сигналу микроконтроллера.
Суть электронного ключа заключается в управлении им большой мощностью по сигналу малой мощности.
Существуют полупроводниковые ключи на базе транзисторов, тиристоров, симисторов. Однако в данной статье рассмотрена работа электронного ключа на биполярном транзисторе. В последующих статьях будут рассмотрены и другие типы полупроводниковых ключей.
В зависимости от полупроводниковой структуры биполярные транзисторы разделяют на два вида: p
—
n
—
p
и n
—
p
—
n
типа (рис. 1
).
Рис. 1 – Структуры биполярных транзисторов
В схемах биполярные транзисторы обозначаются, как показано на рис. 2
. Средний вывод называется базой, вывод со “стрелочкой” – эмиттер, оставшийся вывод – коллектор.
Рис. 2 – Обозначение транзисторов в схемах
Также транзисторы условно можно изобразить в виде двух диодов, которые включены встречно, место соединения их всегда будет базой (рис.3
).
Рис. 3 – Схемы замещения транзисторов диодами