Простой укв приемник на микросхеме к174ха34 своими руками

Приемники УКВ (FM) диапазона

УКВ-ЧМ приемник на микросхеме КР174ХА34А с питанием от USB Сейчас проводное радиовещание во многих поселках уже полностью отсутствует. Еслиже все-таки еще осталась «тяга к «Маяку», можно в корпусе старого абонентского громкоговорителя собрать несложный УКВ-ЧМ приемник на одну радиостанцию, на наиболее мощную и уверенно принимаемую в данной …

1 1722 0

Очень простой УКВ-ЧМ радиопередатчик диапазона 88-108 МГц (74LS13)

Передатчик выполнен на одном из триггеров Шмитта микросхемы 74LS13, он предназначен для передачи монофонического аудиосигнала по радиоканалу на частоте диапазона 88-108 МГц. Рис. 1. Принципиальная схема УКВ-ЧМ радиопередатчика диапазона 88-108 МГц на микросхеме 74LS13. Катушка L1 содержит …

1 1953 0

Простой УКВ радиоприемник на пяти транзисторах

Во многих населенных пунктах проводная радиотрансляция уже перестала существовать, в результате абонентские громкоговорители радиоточки становятся не нужными, а радиослушателям приходится покупать радиоприемники. В то же время, особенно в дачном варианте было бы неплохо заставить работать …

3 3898 3

Схема УКВ-ЧМ приемника на микросхемах KA22429, KA2209

Принципиальная схема самодельного FM радиоприёмника на двух микросхемах KA22429, KA2209, питание — 3В. Ставшая уже привычной схема «типового» самодельного простого УКВ-ЧМ приемника состоит из двух микросхем К174 (одна из которых К174ХА34 или К174ХА42), или двух микросхем фирмы Philips — TDA7010 …

0 3362 0

УКВ приемник на диапазон частот 80-135 МГц (КП327, NE604N, CA3130, LM386)

Схема УКВ приемника для приема телефонных сигналов с амплитудной и частотной модуляцией, диапазон принимаемых частот составляет от 80 до 135 МГц. За основу была взята схема из . Приемник предназначен дляприема телефонных сигналов с амплитудной и частотной модуляцией. Диапазон принимаемых частот составляет 80…135 МГц, что позволяет принимать сигналы авиационных информационных служб, например, прогноза погоды …

1 4529 0

Малогабаритные FM приемники китайского производства (PA22429, SC1088, TDA7040)

Схемы УКВ радиоприемников PALITO PA-993 и PALITO PA-218, введение расширенного УКВ диапазона, а также схема стереодекодера с усилителем ЗЧ. Очень часто в продаже можно встретить миниатюрные FM-приемники китайского производства размерами немногим больше спичечного коробка. Такие приемники помимо малых габаритов отличает электронная автоматическая настройка на радиостанции с помощью двух кнопок: RESET и SCAN. Несмотря на обилие внешнего оформления, и торговых названий …

3 8175 0

Сверхрегенеративный приемник на 144 МГц (КТ368, КТ343)

Приведена принципиальная электрическая схема сверхрегенеративного приемника, который может использоваться в качестве составной части простой портативной радиостанции на диапазон 144 МГц. Схема достаточно простая и особенностей не имеет. Чувствительность приемника составляет около …

1 4114 0

ЧМ генератор на диапазон 90-110 МГц (BF900)

Приведена схема электрическая принципиальная ЧМ генератора, способного работать в FM диапазоне. Генератор может использоваться совместно с высококачественной звуковоспроизводящей аппаратурой. Непосредственно сам генератор выполнен на полевом тетроде VT1 типа BF900. Применение полевого транзистора с двумя изолированными затворами позволило получить очень стабильный генератор с очень низким уровнем шума в выходном сигнале …

1 2714 0

Схема УПЧЗ на 6,5МГЦ (6Ф1П) для сборки радиоприемника из УКВ блока ИП-2

Предлагаю вашему вниманию конструкцию радиоприемника на основе лампового блока УКВ-ИП-2 и самодельного УПЧЗ на лампе 6Ф1П. Много статей посвящено этому блоку УКВ и построению радиоприемника на его основе. Вот принципиальные схемы блоков УКВ-ИП-2 и УКВ-ИП-2А. Принципиальная схема блока УКВ-ИП-2 на радиолампе 6Н3П…

4 6246 5

Простейшие СВ (АМ) и УКВ (ЧМ) радиоприемники на микросхеме LA1800

Несколько вариантов принципиальных схем для построения самодельного радиоприемника на СВ (АМ) и УКВ (ЧМ) диапазоны с использованием универсальной микросхемы LA1800. Микросхема LA1800 предназначена для построения схемы AM / ЧМ радиовещательного приемника. В составе микросхемы есть ЧМ-тракт …

2 5522 0

1 …

ПЧ-усилитель

Характеристики ПЧ-усилителя в супергетеродинном приемнике лучше всего описываются с точки зрения коэффициента усиления (КУ) и селективности. Вообще говоря, эти параметры определяются усилителем ПЧ. Селективность ПЧ-усилителя должна быть равна ширине полосы входящего модулированного РЧ-сигнала. Если она больше, то любая смежная частота пропускается и вызывает помехи. С другой стороны, если селективность слишком узкая, некоторые боковые полосы будут срезаны. Это приводит к потере четкости при воспроизведении звука динамиком или наушниками.

Оптимальная полоса пропускания коротковолнового приемника равна 2300–2500 Гц. Хотя некоторые из более высоких боковых полос, связанных с речевыми сигналами, выходят за пределы 2500 Гц, их потеря существенно не влияет на звучание или информацию, передаваемую оператором. Селективность 400–500 Гц достаточна для работы ДВ. Эта узкая полоса помогает отклонить любой сигнал соседней частоты, который может мешать приему. В любительских радиоприемниках, цена которых выше, используются 2 и более каскада ПЧ-усиления с предшествующим высокоселективным кристаллическим или механическим фильтром. При такой компоновке между блоками используются LC-контуры и преобразователи ПЧ.

Выбор промежуточной частоты определяется несколькими факторами, которые включают: усиление, селективность и подавление сигнала. Для низкочастотных диапазонов (80 и 40 м) ПЧ, используемая во многих современных радиолюбительских приемниках, равна 455 кГц. ПЧ-усилители могут обеспечить превосходный коэффициент усиления и селективность 400–2500 Гц.

Базовая схема регенератора-сверхрегенератора

Для лучшего уяснения процессов, происходящих в сверхрегенераторе, обратимся к устройству, изображённому на рис. 1, которое, в зависимости от постоянной времени цепочки R1C2, может быть и регенератором, и сверхрегенератором.

Рис. 1. Сверхрегенератор.

Эта схема была разработана в результате многочисленных экспериментов и, как представляется автору, оптимальна по простоте, лёгкости налаживания и получаемым результатам.

Транзистор VT1 включён по схеме автогенератора — индуктивной трёхточки. Контур генератора образован катушкой L1 и конденсатором С1, отвод катушки сделан ближе к выводу базы.

Таким образом осуществляется согласование высокого выходного сопротивления транзистора (цепи коллектора) с меньшим входным сопротивлением (цепи базы).

Схема питания транзистора несколько необычна — постоянное напряжение на его базе равно напряжению коллектора. Транзистор, особенно кремниевый, вполне может работать в таком режиме, ведь открывается он при напряжении на базе (относительно эмиттера) около 0,5 В, а напряжение насыщения коллектор-эмиттер составляет, в зависимости от типа транзистора, 0,2…0,4 В.

В данной схеме и коллектор, и база по постоянному току соединены с общим проводом, а питание поступает по цепи эмиттера через резистор R1.

При этом напряжение на эмиттере автоматически стабилизируется на уровне 0,5 В — транзистор работает подобно стабилитрону с указанным напряжением стабилизации.

Действительно, если напряжение на эмиттере упадет, транзистор закроется, эмиттерный ток уменьшится, а вслед за этим уменьшится и падение напряжения на резисторе, что приведёт к возрастанию эмиттерного напряжения.

Если же оно возрастет, транзистор откроется сильнее и увеличившееся падение напряжения на резисторе скомпенсирует это возрастание. Единственное условие правильной работы устройства — напряжение питания должно быть заметно больше — от 1,2 В и выше. Тогда ток транзистора удастся установить подбором резистора R1.

Рассмотрим работу устройства на высокой частоте. Напряжение с нижней (по схеме) части витков катушки L1 приложено к переходу база-эмиттер транзистора VT1 и усиливается им.

Конденсатор С2 — блокировочный, для токов высокой частоты он представляет малое сопротивление. Нагрузкой в коллекторной цепи служит резонансное сопротивление контура, несколько уменьшенное из-за трансформации верхней частью обмотки катушки.

При усилении транзистор инвертирует фазу сигнала, затем её инвертирует трансформатор, образованный частями катушки L1 — выполняется баланс фаз.

А баланс амплитуд, необходимый для самовозбуждения, получается при достаточном усилении транзистора. Последнее зависит от тока эмиттера, а его очень легко регулировать, изменяя сопротивление резистора R1, включив, например, вместо него последовательно два резистора, постоянный и переменный.

Устройство обладает рядом достоинств, к которым относятся простота конструкции, лёгкость налаживания и высокая экономичность: транзистор потребляет ровно столько тока, сколько необходимо для достаточного усиления сигнала.

Подход к порогу генерации получается весьма плавным, к тому же регулировка происходит в низкочастотной цепи, и регулятор можно отнести от контура в удобное место.

Регулировка слабо влияет на частоту настройки контура, поскольку напряжение питания транзистора остается постоянным (0,5 В), а следовательно, почти не изменяются и междуэлектродные ёмкости.

Описанный регенератор способен повышать добротность контуров в любом диапазоне волн, от ДВ до УКВ, причём катушка L1 не обязательно должна быть контурной — допустимо использовать катушку связи с другим контуром (конденсатор С1 в этом случае не нужен).

Можно намотать такую катушку на стержень магнитной антенны ДВ-СВ приёмника, причём число витков её должно составить всего 10-20 % от числа витков контурной катушки, Q-умножитель на биполярном транзисторе получается дешевле и проще, чем на полевом.

Регенератор подойдет и для KB диапазона, если связать антенну с контуром L1C1 либо катушкой связи, либо конденсатором малой ёмкости (вплоть до долей пикофарады). Низкочастотный сигнал снимают с эмиттера транзистора VT1 и подают через разделительный конденсатор ёмкостью 0,1…0,5 мкф на усилитель ЗЧ.

При приёме AM станций подобный приёмник обеспечивал чувствительность 10…30 мкВ (обратная связь ниже порога генерации), а при приёме телеграфных станций на биениях (обратная связь выше порога) — единицы микровольт.

Детекторный с частотным детектором

Радикальный способ улучшения приема состоит в использовании частотного детектора вместо амплитудного. На рис. 2 показана схема портативного детекторного УКВ приемника с простым частотным детектором, выполненным на одном высокочастотном германиевом транзисторе УТ1.

Применение германиевого транзистора обусловлено тем, что его переходы открываются при пороговом напряжении около 0,15 В, что позволяет детектировать довольно слабые сигналы. Переходы кремниевых транзисторов открываются при напряжении около 0,5 В, и чувствительность приемника с кремниевым транзистором получается значительно ниже.

Рис. 2. Детекторный УКВ приемник с частотным детектором.

Как и в предыдущей конструкции, антенна связана с входным контуром L1С1, настраиваемым на частоту сигнала с помощью КПЕ С1. Сигнал с входного контура подается на базу транзистора. С входным контуром индуктивно связан другой — L2С2, также настраиваемый на частоту сигнала.

Колебания в нем, благодаря индуктивной связи, сдвинуты по фазе на 90° относительно колебаний во входном контуре. С отвода катушки L2 сигнал подается на эмиттер транзистора. В коллекторную цепь транзистора включены блокировочный конденсатор С3 и высокоомные телефоны BF1.

Транзистор открывается, когда на его базе и эмиттере действуют положительные полуволны сигнала, причем мгновенное напряжение на эмиттере больше. При этом в его коллекторной цепи через телефоны проходит продетектированный и сглаженный ток. Но положительные полуволны перекрываются лишь частично при сдвиге фаз колебаний в контурах на 90°, поэтому продетектированный ток не достигает максимального значения, определяемого уровнем сигнала.

При ЧМ, в зависимости от отклонения частоты, сдвиг фазы также изменяется, в соответствии с фазочастотной характеристикой (Ф4Х) контура L2С2. При отклонении частоты в одну сторону сдвиг фазы уменьшается и полуволны сигналов на базе и эмиттере перекрываются больше, в результате чего продетектированный ток возрастает.

При отклонении частоты в другую сторону перекрытие полуволн уменьшается и ток падает. Так происходит частотное детектирование сигнала.

Коэффициент передачи детектора прямо зависит от добротности контура L2С2, она должна быть как можно выше (в пределе, как мы сосчитали, до 700), поэтому-то связь с эмиттерной цепью транзистора выбрана слабой. Конечно, такой простейший детектор не подавляет АМ принимаемого сигнала, более того, его продетектированный ток пропорционален уровню сигнала на входе, что является очевидным недостатком. Оправдание — лишь в исключительной простоте детектора.

Так же, как и предыдущий, приемник собран в небольшом корпусе, из которого кверху выдвигается телескопическая антенна, а снизу расположены гнезда телефонов. На переднюю панель выведены ручки обоих КПЕ. Эти конденсаторы не следует объединять в один блок, поскольку, настраивая их раздельно, удается получить и большую громкость, и лучшее качество приема.

Катушки приемника бескаркасные, они намотаны проводом ПЭЛ 0,7 на оправке диаметром 8 мм. L1 содержит 5 витков, а L2 — 7 витков с отводом от 2-го витка, считая от заземленного вывода. Если есть возможность, катушку L2 желательно намотать посеребренным проводом для повышения ее добротности, диаметр провода при этом некритичен.

Индуктивность катушек подбирается сжиманием и растягиванием витков так, чтобы хорошо слышимые УКВ станции оказались в середине диапазона перестройки соответствующего КПЕ. Расстояние между катушками в пределах 15…20 мм (оси катушек параллельны) подбирают подгибанием их выводов, припаянных к КПЕ.

С описанным приемником можно провести массу занимательных экспериментов, исследуя возможность детекторного приема на УКВ, особенности прохождения волн в условиях городской застройки и т. д. Не исключены и эксперименты по дальнейшему усовершенствованию приемника.

Однако качество звука при приеме на высокоомные головные телефоны с жестяными мембранами оставляет желать лучшего. В связи со сказанным, был разработан более совершенный приемник, обеспечивающий лучшее качество звука и позволяющий использовать различные наружные антенны, соединенные с приемником фидерной линией.

Сверхрегенеративный радиоприемник на FM диапазон

Сверхрегенеративный радиоприемник обладает высокой чувствительностью (до ед. мкВ) при достаточной простоте. На рис. 4 приведен фрагмент схемы сверхрегенеративного радиоприемника Е. Солодовникова (без УНЧ, который может быть выполнен по одной из приводимых ранее схем — Простейшие усилители низкой частоты на транзисторах) [Рл 3/99-19].

Рис. 4. Схема сверхрегенеративного радиоприемника Е. Солодовникова.

Высокая чувствительность приемника обусловлена наличием глубокой положительной обратной связи, благодаря которой коэффициент усиления каскада после включения радиоприемника довольно быстро возрастает до бесконечности, схема переходит в режим генерации.

Для того чтобы самовозбуждение не происходило, а схема могла работать как высокочувствительный усилитель высокой частоты, используют очень оригинальный прием. Как только коэффициент усиления каскада усиления возрастет выше некоторого заданного уровня, его резко снижают до минимума.

График изменения коэффициента усиления от времени напоминает пилу. Именно по этому закону изменяют коэффициент усиления усилителя. Усредненный же коэффициент усиления может доходить до миллиона. Управлять коэффициентом усиления можно при помощи специального дополнительного генератора пилообразных импульсов.

На практике поступают проще: в качестве такого генератора используется по двойному назначению сам высокочастотный усилитель. Генерация пилообразных импульсов происходит на неслышимой ухом ультразвуковой частоте, обычно десятки кГц. Для того чтобы ультразвуковые колебания не проникали на вход последующего каскада УНЧ, используют простейшие фильтры, выделяющие сигналы звуковых частот (R6C7, рис. 4).

Сверхрегенеративные приемники обычно используют для приема высокочастотных (свыше 10 МГц) сигналов с амплитудной модуляцией. Прием сигналов с частотной модуляцией возможен за счет преобразования частотной модуляции в амплитудную и последующего детектирования эмиттерным переходом транзистора полученного таким образом амплитудно-модулированного сигнала.

Преобразование частотной модуляции в амплитудную происходит в случае, если приемник, предназначенный для приема амплитудно-модулированных сигналов, настроить неточно на частоту приема частотно-модулированного сигнала.

При такой настройке изменение частоты принимаемого сигнала постоянной амплитуды вызовет изменение амплитуды сигнала, снимаемого с колебательного контура: при приближении частоты принимаемого сигнала к частоте резонанса колебательного контура амплитуда выходного сигнала растет, при удалении от резонансной — снижается.

Наряду с неоспоримыми достоинствами, схема «сверхрегенератора» обладает массой недостатков. Это — невысокая избирательность, повышенный уровень шумов, зависимость порога генерации от частоты приема, от напряжения питания и т.д.

При приеме радиовещательных ЧМ-сигналов в диапазоне FM —  100…108 МГц или сигналов звукового сопровождения телевидения, катушка L1 представляет собой полувиток диаметром 30 мм с линейной частью 20 мм. Диаметр провода — 1 мм. L2 имеет 2…3 витка диаметром 15 мм из провода диаметром 0,7 мм, расположенных внутри полувитка.

Для диапазона 66…74 МГц катушка L1 содержит 5 витков диаметром 5 мм из провода 0,7 мм с шагом 1…2 мм. L2 имеет 2…3 витка такого же провода. Обе катушки не имеют каркасов и расположены параллельно друг другу. Антенна выполнена из отрезка монтажного провода длиной 50… 100 см. Настройку устройства осуществляют потенциометром R2.

Основные концептуальные идеи выбора принципиальной схемы. Назначение узлов.

Ультракоротковолновый приёмник для любительской радиосвязи или радионаблюдений должен обеспечить приём сигналов радиостанций, имеющих малую мощность и расположенных на значительных расстояниях (более 1000 километров). Приём слабых сигналов нередко ведётся в условиях помех со стороны других мощных станций, иногда расположенных на небольшом расстоянии. В условиях города приём сопровождается атмосферными и промышленными помехами. Поэтому требования к чувствительности и избирательности должны быть предельно высокими. Приёмник для любительской радиосвязи или радионаблюдений должен обладать высокой стабильностью частоты, точно калиброванной и удобной шкалой, оптимальной растяжкой диапазона, по возможности регулируемой полосой пропускания, иметь небольшие габаритные размеры и массу.

Современный любительский КВ/УКВ приёмник обычно предназначается для приёма телеграфных сигналов (ТЛГ), однополосно-модулированных телефонных сигналов (ОМ), иногда для приёма телетайпа и частотно-модулированных телефонных сигналов.

В настоящее время наиболее распространённым типом любительских связных приёмников является супергетеродин. В супергетеродинном приёмнике основное усиление высокочастотных сигналов и их селекция (обеспечение необходимой полосы приёма) обеспечиваются не на принимаемой, а на промежуточной частоте, которая выбирается неизменной для всех принимаемых частот . Для перенесения на промежуточную частоту принимаемый сигнал смешивается с колебаниями высокочастотного генератора, называемого также гетеродином Г, частота которого отличается от принимаемой на величину промежуточной частоты.

Блок-схема приёмника приведена на рис.1.

В супергетеродинном приёмнике необходимо обеспечить такое сопряжение частоты настройки входных контуров и контуров УРЧ с частотой гетеродина, чтобы разность этих частот была равна промежуточной во всём принимаемом диапазоне.

С учётом перечисленных требований мы  разработали супергетеродинный приёмник с двойным преобразованием частоты. Для достижения необходимой стабильности частоты приёма в схеме первого гетеродина, имеющего достаточно высокую частоту колебаний, использован кварцевый резонатор.

Принятый антенной сигнал с частотой f1 (в диапазоне 144.0 – 144.5 МГц) поступает на вход малошумящего усилителя высокой частоты УВЧ (блок 1). Усиленный до необходимого уровня сигнал подаётся на один из входов первого преобразователя частоты (блок 2). На второй вход преобразователя частоты подаются колебания первого гетеродина Г1 (блок 10) с частотой f2 равной 138 МГц. В результате смешивания колебаний с частотами f1 и f2 на выходе преобразователя (2) образуются колебания с частотой f3 в полосе 6,0 – 6,5 МГц.

С целью устранения так называемой зеркальной помехи, колебания с частотой f3 на вход второго преобразователя частоты (блок 4) проходят через перестраиваемый полосовой фильтр ПФ (блок 3).

Второй преобразователь частоты смешивает колебания с частотами f3 и f4 . Генератор плавного диапазона второго гетеродина Г2 (блок 11) создаёт колебания в диапазоне частот 5,5 – 6,0 МГц. В результате смешивания на выходе второго преобразователя частоты 4 образуются колебания, частота которых f5 равна промежуточной частоте 500 кГц. 

Колебания промежуточной частоты проходят через систему электромеханических фильтров ЭМФ (блок 5), обеспечивающих основную селекцию сигналов, усиливаются в усилителе промежуточной частоты УПЧ (блок 6) и подаются на вход продукт – детектора (блок 7). В результате сложения колебаний промежуточной частоты и колебаний кварцевого генератора Г3 (блок 12) с частотой 500 кГц на выходе (7) выделяется низкочастотный сигнал.

Выделенный низкочастотный сигнал усиливается усилителем низкой частоты (блок 8) и затем подаётся на головные телефоны либо громкоговоритель (9).

Приемник AM

Одной из основных, базовых исторически схем является приемник, предназначенный для обработки амплитудно-модулированного сигнала, то есть несущей волны, в которой изменение значения амплитуды отражает передаваемую информацию. Демодуляции такого сигнала можно добиться с помощью простого диодного детектора. Принципиальная схема базового AM-приемника включает в себя: антенну, фильтр, диодный детектор и усилитель, обеспечивающий соответствующий уровень демодулированного (уже звукового) сигнала. Диодный детектор в простейших решениях AM-приемников работает как односторонний выпрямитель, который отслеживает изменения огибающей модулированного сигнала путем зарядки и разрядки конденсатора.

Есть различные модификации амплитудной модуляции, возникшие из-за недостатков базовой версии. Спектр амплитудно-модулированного сигнала, помимо несущей частоты, также включает компоненты, частоты которых являются суммой и разностью частоты несущей волны и частоты информационного сигнала. Это так называемые боковые полосы, они называются так потому, что на самом деле сигнал, которым модулируется несущая волна, может содержать множество компонентов с разными частотами. Для воссоздания исходного сигнала нужна только одна полоса. Получение узкой полосы излучения и высокой энергоэффективности достигается за счет подавления одной боковой полосы и несущей волны — технология SSB.

Импульсные модификации

Импульсный самодельный КВ приемник на любительские диапазоны способен работать при частоте 300 МГц. Большинство моделей складываются с контактными стабилизаторами. В некоторых случаях используются трансиверы. Повышение чувствительности зависит от проводимости резисторов. Емкость конденсаторов на выходе равняется 3 пФ.

Проводимость контакторов в среднем составляет 6 мк. Большинство приемников производятся с дипольными переходниками, под которые подходят разъемы РР. Очень часто встречаются конденсаторные блоки, которые работают от тиристоров

Если рассматривать модели на лампах, то важно отметить, что у них используются однопереходные компараторы. Они включаются только при частоте 300 МГц

Также надо сказать, что есть модели с триодами.

Однополюсные устройства

Легко настраиваются именно однополюсные самодельные ламповые КВ приемники. Своими руками модель собирается с переменными компараторами. Большинство модификаций устроены со стабилизаторами низкой проводимости. Стандартная схема приемника предполагает применение дипольных резисторов, у которых емкость на выходе равняется 4.5 пФ. Проводимость при этом может доходить до 50 мк.

Если самостоятельно собирать модификацию, то компаратор надо заготавливать с трансивером. Резисторы напаиваются на модулятор. Сопротивление элементов, как правило, не превышает 45 Ом, однако есть исключения. Если говорить про приемники на реле, то у них используются регулируемые триоды. Работают данные элементы от модулятора, и они отличаются по чувствительности.

Устройства на 300 МГц

Самодельный КВ приемник на любительские диапазоны с частотой 300 МГц включает в себя две пары резисторов. Компараторы у моделей встречаются с проводимостью 40 мк. Некоторые модификации содержат проводные расширители. Данные элементы способны значительно снимать нагрузку с конденсаторов.

Если верить отзывам специалистов, то модели данного типа выделяются повышенной чувствительностью. Самодельные устройства производятся без тетродов. Для улучшения проводимости сигнала применяются только транзисторы. Также надо отметить, что существуют устройства с канальными фильтрами.

Схема УКВ-FM приемника на ТА2003Р

Пищалка на микросхеме кла3 Ждущий мультивибратор на микросхеме ктм2 Самодельный металоискатель на микросхеме кла3 Блок питания на микросхеме lmt Схема усилителя на микросхеме tea b Блок питания на микросхеме.

Интересные схемы. Ик прожектор своими руками схема Пояснительная записка содержит 78 листов, 34 рисунка, 11 таблиц, 8 источников Принципиальная схема — щелкните мышью для получения большого изображения Очень часто радиолюбители, желая создать новую конструкцию, ищут схему, которая, при некоторой простоте, имела бы вполне сносные технические параметры. Если у вашего экземпляра кварца В результате получилась схема, показанная на рисунке 1. Как видно, по числу навесных элементов она не превосходит типовую схему включения КХА А наличие одного контура ПЧ, согласитесь, минимальная плата за хорошее звучание.

Схема радиоприёмника диапазона УКВ на ta Как вы уже заметили, в схеме нет переменного конденсатора, он заменён на пару варикапов и переменное сопротивление. Образец жалоба на электросети Скачать звук вокзала аэропорта Кинотеатр кронверк рязань расписание сеансов и цены Скачать читы на правило войны ядерная стратегия Vw passat b6 схема проводки Текст песни анду швеция.