Оглавление
Проблемы дизайна
Скорость переключения
Две важные проблемы при проектировании схем драйверов MOSFET в усилителях класса D заключаются в том, чтобы максимально сократить время простоя и работу в линейном режиме. «Мертвое время» — это период во время переключения, когда оба выходных полевых МОП-транзистора переведены в режим отсечки и оба «выключены». Мертвые времена должны быть как можно более короткими, чтобы поддерживать точный выходной сигнал с низким уровнем искажений, но слишком короткие мертвые времена приводят к тому, что MOSFET, который включается, начинает проводить ток до того, как MOSFET, который выключается, перестанет проводить. Полевые МОП-транзисторы эффективно замыкают выходной источник питания через себя в состоянии, известном как «сквозной проход». Между тем, драйверы MOSFET также должны как можно быстрее переводить полевые МОП-транзисторы между состояниями переключения, чтобы минимизировать количество времени, в течение которого полевой МОП-транзистор находится в линейном режиме — состоянии между режимом отсечки и режимом насыщения, когда полевой МОП-транзистор не включен ни полностью, ни полностью. выключен и проводит ток со значительным сопротивлением, создавая значительное тепло. Отказы драйверов, которые допускают прострел и / или слишком большую работу в линейном режиме, приводят к чрезмерным потерям, а иногда и к катастрофическому отказу полевых МОП-транзисторов. Также есть проблемы с использованием ШИМ для модулятора; по мере того, как уровень звука приближается к 100%, ширина импульса может стать настолько узкой, что это будет препятствовать способности схемы драйвера и полевого МОП-транзистора реагировать. Эти импульсы могут сокращаться до нескольких наносекунд и могут привести к вышеуказанным нежелательным условиям сквозного и / или линейного режима. Вот почему другие методы модуляции, такие как модуляция плотности импульсов, могут приблизиться к теоретической 100% эффективности, чем ШИМ.
Электромагнитная интерференция
Переключаемый силовой каскад генерирует как высокие значения dV / dt, так и dI / dt, которые вызывают излучаемое излучение всякий раз, когда какая-либо часть схемы достаточно велика, чтобы действовать как антенна . На практике это означает, что соединительные провода и кабели будут наиболее эффективными излучателями, поэтому больше всего усилий следует направить на предотвращение попадания высокочастотных сигналов на следующие:
- Избегайте емкостной связи при коммутации сигналов в проводке.
- Избегайте индуктивной связи различных токовых контуров силового каскада с проводкой.
- Используйте одну сплошную заземляющую пластину и сгруппируйте все разъемы вместе, чтобы иметь общий опорный радиочастотный сигнал для развязывающих конденсаторов.
- Перед выбором компонентов включите эквивалентную последовательную индуктивность конденсаторов фильтра и паразитную емкость катушек индуктивности фильтра в модель схемы.
- Везде, где встречается звон , найдите индуктивную и емкостную части резонансного контура, который его вызывает, и используйте демпферы с параллельным RC или последовательным RL для уменьшения добротности резонанса.
- Не заставляйте полевые МОП-транзисторы переключаться быстрее, чем это необходимо для выполнения требований к эффективности или искажениям. Искажения легче уменьшить, используя отрицательную обратную связь, чем ускоряя переключение.
Конструкция блока питания
Усилители класса D предъявляют дополнительные требования к источнику питания, а именно, чтобы он мог поглощать энергию, возвращаемую от нагрузки. Реактивные (емкостные или индуктивные) нагрузки накапливают энергию в течение части цикла и возвращают часть этой энергии позже. Линейные усилители рассеивают эту энергию, усилители класса D возвращают ее в источник питания, который должен каким-то образом сохранять ее. Кроме того, полумостовые усилители класса D передают энергию от одной шины питания (например, положительной шины) к другой (например, отрицательной) в зависимости от знака выходного тока. Это происходит независимо от того, резистивная нагрузка или нет. Источник должен либо иметь достаточно емкостного накопителя на обоих рельсах, либо иметь возможность передавать эту энергию обратно.
Выбор активного устройства
Активные устройства в усилителе класса D должны действовать только как управляемые переключатели и не должны иметь особо линейного отклика на управляющий вход. Обычно используются биполярные транзисторы или полевые транзисторы. Вакуумные лампы могут использоваться в качестве устройств переключения мощности в усилителях звука класса D.
Терминология
Термин «класс D» иногда неправильно понимают как означающий « цифровой » усилитель. Хотя некоторые усилители класса D действительно могут управляться цифровыми схемами или включать устройства цифровой обработки сигналов, силовой каскад имеет дело с напряжением и током как функцией неквантованного времени. Малейший шум, погрешность синхронизации, пульсации напряжения или любая другая неидеальность немедленно приводят к необратимому изменению выходного сигнала. Те же ошибки в цифровой системе приведут к неверным результатам только тогда, когда они станут настолько большими, что сигнал, представляющий цифру, будет искажен до неузнаваемости. До этого момента неидеальности не влияли на передаваемый сигнал. Как правило, цифровые сигналы квантуются как по амплитуде, так и по длине волны, тогда как аналоговые сигналы квантуются в одной (например, ШИМ) или (обычно) ни в одной величине.
Схема усилителя класса D 4500Вт
Схема усилителя класса D — в этой статье хочу поделится с вами схемой усилителя D класса сверх высокой мощности, он способен отдать в нагрузку 4Ом 3000Вт а на нагрузку 2Ом 4500Вт. Такой усилитель можно использовать как на соревнованиях по автозвуку так и на разных эстрадных мероприятиях на открытом воздухе.
Схема усилителя:
Усилитель построен с использованием всем известного драйвера IR2110 выход которого усилен транзисторами BD139/BD140. На выходе используется 3 пары выходных транзисторов типа IRFP260 что дает возможность усилителю, работать на мало омные нагрузки.
Такой мощности усилитель обязательно нуждается в хорошей защите от перегрузок и коротких замыканий на выходе. В этой схеме защита построена с использованием таймера NE555 и быстрого компаратора LM311 что обеспечивает быстрое срабатывание защиты не приводя к выходу из строя выходных транзисторов и драйвера.
Печатная плата усилителя:
Настройка усилителя сводится к установки срабатывания защиты переменным резистором RV1. Напряжение питания усилителя двухполярное от 32В до 100В. В выходном каскаде усилителя можно использовать транзисторы типа: IRFP260, IRFP4227, IRFP4242 и другие подобные, транзисторы следует обязательно закрепить на радиатор.
Схема усилителя класса D — список деталей:
Резисторы R1, R3, R4, R9, R13, R18, R19, R20= 1K R2, R16, R39= 100K R5, R6= 10R R7, R8=6K8/2W R10, R21, R26, R27=4K7 R11, R17=6K8 R12=100R R14, R15=4R7 R22, R23, R24, R25, R31, R33=47R R28, R29, R30=0,1R/2W R36, R38=22R/2W R40=1K5/5W R41=10R/2W RV1=10K
Конденсаторы C1=10uF/16V C2=10N C3, C4=1N C5=470uF/16V C6=220uF/16V C7, C9, C11, C12, C13, C15, C16, C18, C19=100N MKP C8=470uF/16V C10, C14, C17=100uF/16V C20=10uF/50V C21, C22, C23=220N/475V C24, C25, C26=470uF/180V C27, C31, C33=100N/275V C28, C29, C30=470uF/180V C32=470N/250V
Диоды D1, D2, D5, D10, D11= 1N4148 D3, D4= ZD5V6 D6, D18, D19= MUR460 D7= LED (RED) OCP D8= ZD5V6 D9= LED (BLUE) D12,D13,D14,D15,D16,D17= 1N5819
Транзисторы Q1= 2N5401 Q4, Q6= BD139 Q5, Q7= BD140 Q8, Q9, Q10, Q11, Q12, Q13= IRFP260
Микросхемы U1= TL071 Q2= CD4049 Q3= IR2110 U2= NE555 U3= LM311
Фото собранного усилителя:
Скачать: Печатная плата, схема усилителя
Изготовление печатной платы усилителя:
Тест усилителя:
Предыдущая запись Материнская плата что это
Следующая запись Схема импульсного блока питания
Цифровая реализация
Цифровой усилитель D-класса состоит из блоков обработки и передачи цифровых данных, реализованных на микроконтроллере, и блока генерирования ШИМ-сигнала. Он может быть реализован как внешнее, автономное устройство к уже готовой аудиосистеме. Однако это ведет к дополнительным расходам (нужно приобрести и припаять микросхемы) и потенциальному росту стоимости отладки интерфейса между источником входного аудиосигнала и усилителем.
Усилитель звука на микросхеме микроконтроллера характеризуется следующим:
• частота ШИМ-сигнала (дискретизации) должна быть не менее чем в 10 раз выше, чем максимальная частота входного сигнала, чтобы можно было его адекватно реконструировать на выходе усилителя;
• высокой разрешающей способностью процесса управления шириной ШИМ-импульсов для предотвращения искажений квантования выходного сигнала;
• наличием метода взятия выборок входного аналогового сигнала;
• быстродействующим ядром для цифровой обработки и управления данными;
• интерфейсом для передачи ШИМ-сигнала на внешние MOSFET-транзисторы.
Примером реализации устройства, способного удовлетворить все эти требования, является 32-разрядный микроконтроллер типа SiM3U1xx с быстродействующими периферийными устройствами ввода/вывода производства компании Silicon Labs (Остин, Техас, США). Эти микроконтроллеры однозначно подходят для нетрадиционных приложений типа усилителей мощности класса D, непосредственно подключающихся к динамикам. Единственные внешние компоненты, необходимые для аудиоусилителя на SiM3U1xx, являются дроссель и несколько конденсаторов. Устройства ввода-вывода также имеют программируемое ограничение тока, позволяют использовать до 16 уровней громкости без необходимости прошивки для масштабирования аудиоданных, экономя при этом время и объем памяти. Поскольку они запитаны отдельным от остальной части устройства напряжением, то их можно подключать к внешним мощным МОП-транзисторам.
SiM3U1xx-устройства также включают USB-трансивер, совместимый с USB-аудиоинтерфейсом, встроенную флэш-память на 256 Кб, два 12-разрядных аналого-цифровых преобразователя, осуществляющих оцифровку потокового аудио с ПК или портативного музыкального проигрывателя. Структурная схема устройства показана на рисунке. Оно вполне может использоваться как усилитель в машину.
Какой класс усилителей звука лучше
В зависимости от сферы использования и особенностей окружающих условий подходящими вариантами становятся усилители всех групп. Отдельно стоит рассматривать оборудование для дома и авто.
Для дома
Подбирая усилитель для домашней акустики, лучше вперед рассмотреть устройства категорий АВ и D с маркировками «sound». Первый тип представляет собой аналоговый прибор, который гарантирующий качественное звучание со средними искажениями.
Устройства категории D – цифровые модели, которые способны обладать любыми характеристиками в зависимости от установленных на схеме компонентов.
Для автомобиля
На автомобилях используют классы автоусилителей А, В, АВ и D. Модели разновидности А на практике встречаются редко из-за дороговизны и низкого КПД.
Стереоусилитили класса В характеризуются большим КПД, но проигрывают в плане искажений звучания. В автоакустике также применяются редко.
Распространенными среди автолюбителей считаются устройства категории АВ. Характеризуются средним качеством звучания, нужными показателями мощности, чистым звуком и повышенным КПД. Подходит для сабвуферов мощностью от 500 до 600 Вт.
Оборудование категории D используют для обработки цифровых сигналов. Приборы компактны, а также характеризуются повышенными показателями мощности. КПД на уровне 90-98% сводит к минимуму вероятность перегрева прибора, а значит, тут не требуется специальный радиатор охлаждения. Среди автомобилистов такие модели не распространены по причине дороговизны.
Особенности
Разберемся, что же мы получаем в лице класса G и H с пользовательской точки зрения. Первое — это сочетание компактности, энергоэффективности и классического характера звучания. Если хочется мускулистого, но не слишком прожорливого усилителя, а класс D не устраивает по идеологическим причинам, классы G и H — ваш выбор. Привычный характер класса АВ, дополненный динамикой и мощью класса D, к вашим услугам.
Второе преимущество не столь очевидно, но, в действительности, более значительно. Имея солидный запас энергии, усилители классов G и H лучше справляются со сложной нагрузкой. Такой аппарат куда спокойнее реагирует на акустику с низкой чувствительностью или модели, требующие высокой подводимой мощности. Это позволяет расширить выбор колонок и избежать нагромождения усилителей мощности в системе.
Звук
Скромный на вид Arcam HDA SA20 казался подходящим партнером разве что для полочной акустики, но это тот случай, когда внешность обманчива на все 100%. Усилитель не менял характер звучания и не упускал бас из-под контроля на акустике любой сложности. Самые мощные и требовательные модели подчинялись его воле беспрекословно, выдавая на удивление точный, быстрый и упругий бас, поражающий сочетанием плотности, динамики и тембральной полноты. С лучшими представителями классов А и АВ те же колонки выдавали низкие частоты куда менее сфокусированно, а порой норовили даже размазать ноты или слить их в общий гул без какой-либо конкретики.
Средние и верхние частоты звучали столь же собранно и четко, без всякой выраженной окрашенности и без искажений даже на высокой громкости. Живая музыка и вокал воспроизводились точно как тембрально, так и интонационно.
Каких-либо изменений характера звучания на разных уровнях громкости заметить не удалось. Усилитель играл детально и чисто как на малой, так и на большой громкости. Будучи исключительно сфокусированным, звук Arcam HDA SA20 не казался сухим или пустым. Усилитель просто не добавлял в музыку ничего лишнего. Те записи, которые должны были звучать тепло и выразительно, показывали именно такой характер, а сухие и жесткие миксы не подкрашивались и не смягчались.
Единственный момент, вызвавший некоторые вопросы — построение сцены. Она была достаточно широкой, но казалась плоской, без ощутимой глубины, хотя та же акустика с другими усилителями создавала куда более убедительное ощущение объема. Впрочем — это однозначно говорит лишь о том, что имеется поле для экспериментов. Основные же признаки схемотехники класса G были вполне очевидны и проявили себя наилучшим образом. Кстати, по ходу тестирования Arcam HDA SA20 нагрелся очень умеренно.
Основная операция
Усилители класса D работают, генерируя последовательность прямоугольных импульсов фиксированной амплитуды, но с различной шириной и разделением, или с переменным числом в единицу времени, представляя изменения амплитуды входного аналогового аудиосигнала. Часы модулятора могут синхронизироваться с входящим цифровым аудиосигналом, что устраняет необходимость преобразования сигнала в аналоговый. Затем выход модулятора используется для попеременного включения и выключения выходных транзисторов
Особое внимание уделяется тому, чтобы пара транзисторов никогда не могла проводить вместе, так как это может вызвать короткое замыкание между шинами питания транзисторов. Поскольку транзисторы либо полностью «включены», либо полностью «выключены», они проводят очень мало времени в линейной области и рассеивают очень мало энергии
Это основная причина их высокой эффективности. Простой фильтр нижних частот, состоящий из катушки индуктивности и конденсатора, обеспечивает путь для низких частот звукового сигнала, оставляя позади высокочастотные импульсы. В приложениях, чувствительных к стоимости, выходной фильтр иногда не используется. В этом случае схема полагается на индуктивность громкоговорителя, чтобы ВЧ-компонент не нагревал звуковую катушку.
Структура силового каскада класса D в некоторой степени сравнима со структурой синхронно выпрямленного понижающего преобразователя (тип неизолированного импульсного источника питания (SMPS) ), но работает в обратном направлении. В то время как понижающие преобразователи обычно функционируют как регуляторы напряжения , обеспечивая постоянное напряжение постоянного тока переменной нагрузке, и могут подавать только ток (одноквадрантный режим работы), усилитель класса D подает постоянно изменяющееся напряжение на фиксированную нагрузку, где ток и напряжение может самостоятельно менять знак (четырехквадрантная операция). Коммутационный усилитель не следует путать с линейными усилителями, которые используют SMPS в качестве источника постоянного тока. Коммутационный усилитель может использовать любой тип источника питания (например, автомобильный аккумулятор или внутренний SMPS), но определяющей характеристикой является то, что сам процесс усиления работает путем переключения. В отличие от SMPS, усилитель выполняет гораздо более важную работу — не допускать попадания нежелательных артефактов на выход. Обратная связь почти всегда используется по тем же причинам, что и в традиционных аналоговых усилителях, для уменьшения шума и искажений.
Теоретическая энергоэффективность усилителей класса D составляет 100%. Другими словами, вся мощность, подаваемая на него, передается нагрузке, ни одна из них не превращается в тепло. Это связано с тем, что идеальный переключатель в состоянии «включено» будет проводить весь ток, но не будет иметь потерь напряжения на нем, следовательно, тепло не будет рассеиваться. И когда он выключен, на нем будет полное напряжение питания, но через него не будет протекать ток утечки, и снова не будет рассеиваться тепла. Реальные силовые полевые МОП-транзисторы не являются идеальными переключателями, но их практический КПД превышает 90%. Напротив, линейные усилители класса AB всегда работают как с протекающим током, так и с напряжением на силовых устройствах. Идеальный имеет теоретический максимальный КПД 78%. (чисто линейные, устройства всегда включены) имеют теоретический максимальный КПД 50%, а некоторые версии имеют КПД ниже 20%.
Общие принципы устройства усилителя
Если в двух словах, то усилитель состоит из последовательности каскадов усиления, соединенных между собой. Хотя бывают и однокаскадные усилители. Каскад усиления представляет собой ступень усилителя, состоящую из одного или нескольких усилительных элементов, цепи нагрузки и связи с другими ступенями. Усилительные элементы могут быть представлены электронными лампами, транзисторами и даже туннельными диодами.
Помимо прямых межкаскадных связей существуют и отрицательные обратные связи, позволяющие сделать работу усилителя более стабильной и снизить степень искажения сигнала. Для этой цели в усилителях используют, например, термисторы для стабилизации температуры во время работы усилителя или частотнозависимые составляющие, которые выравнивают частную характеристику.
Также между каскадами усилителя, во входных и выходных цепях могут использоваться аттенюаторы или потенциометры, чтобы регулировать степень усиления сигнала, и фильтры, чтобы регулировать и задавать частотную характеристику.
Усилители можно разделить на аналоговые и цифровые. Очевидно, в аналоговых устройствах входной сигнал усиливается аналоговыми каскадами и не подвергается дальнейшей оцифровке, оставаясь аналоговым на выходе. В цифровых усилителях аналоговый входной сигнал после аналогового усиления подвергается аналого-цифровым преобразованиям, и выходной сигнал оказывается уже цифровым.
Минусы
Продолжая тему снижения энергопотребления, нельзя не отметить и тот факт, что переход от класса А к классу АВ дал куда более существенный прирост КПД усилителя, нежели переход от АВ к G или H. При этом класс D превосходит по энергоэффективности все предыдущие классы куда более существенно, и на его фоне разница между классом АВ и классами G/H начинает казаться совершенно незначительной. В свете этого на первый план выходит вопрос технически более сложной схемотехники классов G и H. Фактически, эта конструкция в полтора-два раза сложнее обычного класса АВ со всеми вытекающими из этого рисками снижения надежности и стабильности работы.
Использует
- Домашний кинотеатр в коробочных системах. Эти экономичные системы домашнего кинотеатра почти всегда оснащены усилителями класса D. Из-за скромных требований к производительности и простой конструкции наиболее распространено прямое преобразование цифрового звука в ШИМ без обратной связи.
- Мобильные телефоны . Мощность внутреннего громкоговорителя составляет до 1 Вт. Класс D используется для продления срока службы батареи.
- Слуховые аппараты . Миниатюрный громкоговоритель (известный как приемник) напрямую приводится в действие усилителем класса D для максимального увеличения срока службы батареи и может обеспечивать уровни насыщения 130 дБ SPL или более.
- Активные динамики
- Высококачественный звук обычно консервативен в отношении внедрения новых технологий, но усилители класса D появились.
- Активные сабвуферы
- Системы звукоусиления . Для усиления очень большой мощности потери мощности усилителей AB недопустимы. Усилители с выходной мощностью в несколько киловатт доступны как класс D. Доступны усилители мощности класса D, которые рассчитаны на 1500 Вт на канал, но при этом весят всего 21 кг (46 фунтов).
- Усиление басовых инструментов
- Радиочастотные усилители могут использовать класс D или другие классы коммутируемого режима для обеспечения высокоэффективного усиления РЧ мощности в системах связи.
Модуляция сигнала
Двухуровневая форма волны получается с использованием широтно-импульсной модуляции (ШИМ), модуляции плотности импульсов (иногда называемой частотно-импульсной модуляцией), управления скользящим режимом (в торговле более часто называемой «автоколебательной модуляцией») или дискретной — временные формы модуляции, такие как дельта-сигма модуляция .
Самый простой способ создания сигнала ШИМ — использовать высокоскоростной компаратор (« C » на блок-схеме выше), который сравнивает высокочастотную треугольную волну с аудиовходом. Это генерирует серию импульсов, рабочий цикл которых прямо пропорционален мгновенному значению аудиосигнала. Затем компаратор управляет драйвером затвора МОП, который, в свою очередь, управляет парой мощных переключателей (обычно полевых МОП-транзисторов ). Это дает усиленную копию ШИМ-сигнала компаратора. Выходной фильтр удаляет высокочастотные переключающие компоненты сигнала ШИМ и восстанавливает аудиоинформацию, которую может использовать динамик.
Усилители на основе DSP, которые генерируют сигнал ШИМ непосредственно из цифрового аудиосигнала (например, SPDIF ), либо используют счетчик для измерения длительности импульса, либо реализуют цифровой эквивалент модулятора на основе треугольника. В любом случае временное разрешение, обеспечиваемое практическими тактовыми частотами, составляет всего несколько сотых периода переключения, что недостаточно для обеспечения низкого уровня шума. Фактически, длина импульса квантуется , что приводит к искажению квантования . В обоих случаях отрицательная обратная связь применяется внутри цифровой области, образуя формирователь шума, который имеет более низкий уровень шума в слышимом диапазоне частот.
Классы автомобильных усилителей
Усилитель звука для авто, работающий в классе А, состоит из транзисторных каскадов, которые включены (проводят ток) как в течение всего времени действия входного аудиосигнала, так и при его отсутствии. У него низкий уровень искажений усиленного выходного звукового сигнала, поскольку его транзисторы работают на линейных участках своих характеристик и полностью транслируют входные сигналы на выход схемы, но он при этом имеет весьма низкий КПД. Эти устройства обычно предназначены для высококачественных аудиоприложений, для которых вопросы потерь мощности не являются определяющими. Транзисторы усилителей класса B проводят только либо отрицательные, либо положительные полуволны входного сигнала. Причем наличие зон нечувствительности вблизи нулевой отметки приводит к высокому уровню искажений. Однако этот эффект обеспечивает гораздо лучшие характеристики, чем в устройствах типа A. Усилитель класса AB комбинирует особенности обеих предыдущих с целью получения лучшего КПД, чем в классе A, но меньших искажений, чем в типе B. Хотя эти устройства хорошо подходят для маломощных приборов, или в лучшем случае средней мощности, тенденцией последних лет становится выпуск все более мощных усилителей. Когда-то 30 Вт считалось вполне достаточно, чтобы удовлетворить большинство потребителей. Теперь же этого вряд ли хватит, чтобы создать качественный стереоусилитель звука для авто. В результате были созданы новые их классы, включая и класс D, чтобы справиться с этой высокой мощностью потребления.
Принцип работы
Из самого обозначения класса АВ нетрудно сделать вывод, что данный режим является гибридом класса А и класса В. Как работают усилители класса А, мы уже разобрались, а с классом В ознакомиться не успели, поэтому начнем с него. И для начала вспомним логику, которой руководствовался создатель усилителя класса А. Для того, чтобы получить возможность воспроизводить и положительную, и отрицательную полуволну с помощью одного активного элемента, он применил смещение средней точки (тока покоя) в середину рабочей зоны лампы.
Создатели усилителей класса В рассуждали по-другому: «Если одна лампа или один транзистор с нулевым смещением способен воспроизвести только одну полуволну сигнала, почему бы не добавить в схему еще один активный элемент, разместив его зеркально, чтобы воспроизводить другую полуволну?».
Это вполне логично, ведь при таком раскладе оба транзистора работают с нулевым смещением. Пока на входе усилителя присутствует положительная полуволна — работает один транзистор, а когда приходит время воспроизводить отрицательную полуволну, первый транзистор полностью закрывается и вместо него в работу включается второй. В английском варианте этот принцип действия получил название push-pull или, говоря по-русски, «тяни-толкай», что в общем-то очень хорошо описывает происходящее.
Если сравнивать класс В с классом А, наиболее очевидным преимуществом является то, что в классе В на каждую волну приходится полный рабочий диапазон транзистора (или лампы), в то время как в классе А обе полуволны воспроизводятся одним активным элементом. Это значит, что усилитель класса В будет вдвое мощнее усилителя класса А, собранного на таких же транзисторах.
Второй, чуть менее очевидный, но очень важный плюс класса В — нулевые токи смещения. Когда сигнал на входе равен нулю, ток, протекающий через транзисторы, тоже равен нулю, а это значит, что напрасного расхода энергии не происходит, и энергоэффективность схемы получается в разы выше, чем в классе А.
Однако из этого же факта вытекает и главный недостаток усилителя класса В. Момент включения транзистора в работу после полностью закрытого состояния сопровождается небольшой задержкой, поэтому при прохождении звуковым сигналом нулевой точки, когда один транзистор уже закрылся, второй транзистор не успевает мгновенно подхватить эстафету, и в этой самой переходной точке возникают небольшие временные задержки.
На практике это выражается в особенной нелюбви усилителя к тихой музыке, а также в плохой передаче микродинамики. И хотя история знает успешные реализации класса В, например — легендарный Quad 405, проблемы данного режима работы никуда не делись. Тот же 405-й не только радовал энергичным и мускулистым звучанием, но также имел явную склонность рисовать звуковую картину крупными мазками, масштабно, не размениваясь на мелочи.
Для того, чтобы сохранить все плюсы класса В и решить проблему переходных процессов, инженеры пошли на хитрость. Они включили оба транзистора со смещением, как это делается в классе А, но величина смещения при этом была выбрана существенно меньшая: так, чтобы покрыть лишь те моменты, когда транзистор близок к закрытию, выводя тем самым переходные процессы из рабочей зоны.
Это позволило усилителю класса АВ незаметно преодолевать нулевую точку, а также дало еще один крайне полезный эффект. При малой амплитуде сигнала, укладывающейся в пределы смещения тока покоя, подобный усилитель работает в классе А и, только когда амплитуда выходит за пределы выбранной производителем величины смещения, он переходит в режим АВ.
Выводы
Если подытожить вышесказанное, то независимо от класса, любой усилитель может быть как плохим, так и хорошим. Результат зависит не от класса, а от конкретной схемотехники. КПД – важный показатель усилителя, и самый высокий он у D-класса.
При выборе усилителя, по большому счету, стоит обращать внимание на две вещи: выдаваемую мощность на заданное сопротивление нагрузки и цену. Наиболее популярны сейчас усилители А/В класса, что объясняется наилучшим соотношением вышеназванных критериев: работают они хорошо при относительно невысокой стоимости
Аудиофилы остаются поклонниками А-класса за их чистый звук. Профессионалы с деньгами всё чаще смотрят на D-класс, всё-таки его КПД существенно выше, а также в большинстве своем они имеют на борту дополнительную динамическую обработку – кроссовер, эквалайзер, лимитер и даже настройку задержки аудио сигнала, необходимую для крупных инсталляций, где акустические системы могут находиться от сцены на расстоянии порядка сотни метров. Нет предела совершенству, как и поискам новых решений. Поэтому экспериментируйте и ищите лучшее решение для своих задач.