Операционный усилитель

Оглавление

Усилитель своими руками 100Вт/200Вт

На вход первого транзистора ставится регулятор громкости переменный резистор 47 кОм, он же снижает уровень шума усилителя.

При минимальной громкости шум не прослушивается, а при максимальной маскируется полезным сигналом.

Параметры изделия: 150Вт на нагрузку 4 Ом и 100Вт на нагрузку 8 Ом.

Второй усилитель звука лишен недостатков первого, что касается шума. Усилитель работает в классе В, диоды D2-D3-D4 задают данный режим работы выходным транзисторам VT4-VT5.

Транзисторы VT3-VT5 устанавливаются на теплоотвод, через изолирующие прокладки применяя при этом термопасту.

Сделанный УНЧ своими руками можно применить в активной колонке, сабвуфере воспроизведения низких частот превосходны.

В этой статье на нашем сайте www.radiochipi.ru мы расскажем вам как самостоятельно собрать усилители звука, что и позволит сэкономить на покупке уже готовых моделей.

Какой усилитель мощности будет лучшим?

Единого мнения о том какой тип усилителя лучший не существует. В настоящее время имеется возможность самостоятельной сборки двух типов усилителей звука:

Ламповые модели пользовались популярностью в недалёком прошлом. Они отличаются увеличенными размерами и повышенным потреблением электроэнергии.

Но при этом подобные ламповые усилители превосходят своих конкурентов по качеству звучания.

Транзисторные усилители имеют компактный размер и малое потребление электроэнергии. При этом они обеспечивают отличное качество звука.

С чего начать работу?

Для начала вам надлежит определиться с мощностью будущего усилителя. Стандартным параметром мощности для использования усилителя в домашних условиях является уровень в 30 – 50 Вт. Если же вам нужно изготовить простой усилитель звука, который будет использоваться для масштабных мероприятий, мощность может составлять 200-300 ватт.

Для работы нам потребуются следующие инструменты:

  • Набор отверток.
  • Мультиметр.
  • Паяльник.
  • Материал для изготовления корпуса.
  • Электродетали.
  • Текстолит для печатной платы.

По сути, печатные платы являются основой для будущего усилителя. Собрать её в домашних условиях не составит сложности.

Для выполнения печатной платы своими руками вам потребуется:

  • Текстолит, имеющий медную фольгу.
  • Моющее средство.
  • Бытовой утюг.
  • Самоклеящаяся китайская плёнка.
  • Лазерный принтер.
  • Сверло для работы с платой.

Кусок хлопчатобумажной ткани или марлевый тампон. Вырезаем из текстолита заготовку будущей платы. Оставьте с каждой из сторон сантиметровый запас. При помощи моющего средства необходимо обработать кусок текстолита, чтобы медная фольга получила розовый цвет. Промываем сделанную нами заготовку и тщательно её выслушиваем.

Приклеиваем самоклеящуюся плёнку к листу формата А4. Распечатываем на принтере заготовку будущей платы. Рекомендуется установить на максимум подачу тонера в принтер. На рабочую поверхность следует уложить фанеру, старую книгу и сверху плату фольгой вверх. Все накрываем офисной бумагой и тщательно прогреваем горячим утюгом. Прогревать нужно около 1 минуты.

Наносим распечатанную схему с листа бумаги на разогретую плату. Накрываем сверху плату листом бумаги и в течение 30 секунд прогреваем утюгом. Разглаживает рисунок при помощи тампона поперечными и продольными движениями. Дождитесь остывания заготовки, после чего можно снять с неё подложку.

Что нам понадобиться?

Перед проведением монтажных работ следует убедиться в том, что разводка электрических проводов в помещении произведена, и место для выключателя света подготовлено.

Для проведения работы потребуется приготовить:

  • пассатижи;
  • набор отверток (фигурную, прямую, индикаторную);
  • полипропиленовый или пластмассовый подрозетник (монтажная коробка);
  • изоляционная лента;
  • нож для зачистки изоляции;
  • паяльник с припоем и флюсом;
  • выключатель с одной клавишей;
  • распределительная коробка (в ней выполняются подсоединения всех проводов);
  • шпатлевка;
  • перфоратор.

Для коммутации всей электрической схемы пригодится двухжильный провод, выбирать следует такой, в котором провода имеют цветную изоляцию. Это значительно облегчит процесс коммутации.

Виды импульсных реле

Какие еще разновидности импульсных реле существуют? Есть например, с функцией задержки по времени.

Ее можно использовать для задержки как при включении света, так и при его отключении. Выезжаете вечером из собственного коттеджа и нажимаете в доме на специальную кнопку.

Это дает вам время спокойно пройти по освещенным дорожкам до калитки и только после этого свет автоматически выключится.

Такой способ не требует даже установки отдельных выключателей на улице.

Еще к таким реле можно подключить вытяжной вентилятор в ванной. Выходя из ванной комнаты, нажимаете на кнопку, а вентилятор продолжает работать заданный вами промежуток времени.

Установленные правила и нормативы размещения выключателей в квартире

Перед тем как подключить выключатель одноклавишный, двухклавишный, выбирают место. Размещение приборов регламентировано строительными нормами. Согласно последним, все устройства для включения/выключения осветительных приборов должны находиться рядом с входной дверью. Выбирают зону на стене со стороны ручки на двери, для светильников в прикроватной части спальни, выключатель монтируют в изголовье ложа.

Определяя, где и как подключить двухклавишный выключатель в кухне, туалетной и другой зоне с высоким уровнем влажности, смотрят нормативы ПУЭ:

  1. Душевая кабина. Расстояние до прибора не менее 60 см.
  2. Газопровод. Отступают от 50 см.
  3. Дверной проем. Не ближе 10 см от коробки.
  4. Полы. Отмеряют высоту не менее 90 см.

Как проектировался этот УНЧ.

Начал я с того, что определился с основными параметрами УНЧ.

После этого начал подбирать детали, начиная с трансформатора и микросхем и кончая ручками регуляторов и ножками для будущего корпуса.

По мере появления деталей, макетировал отдельные узлы.

Когда мне удалось подобрать все основные узлы УНЧ, я седлал предварительную разводку печатных плат блока питания, блока регуляторов и самого УНЧ.

И только тогда, когда стало ясно, какой объём потребуется для этого УНЧ, я стал искать корпус.

Из готовых корпусов ничего интересного подобрать не удалось, да и цена на радиорынке оказалась немалой – 6 — 8$ за коробки, отлитые из полистирола.

Тогда я снова отправился в магазин сантехники и подобрал там корпус в стиле недавно изготовленных колонок. Этот ударопрочный корпус, состоящий из трёх частей, обошёлся всего в 4$.

Очень хотелось найти к этому корпусу радиатор цилиндрической формы, такой, как используется на современных Intel-ловских кулерах, но на развалах радиорынка они пока не появилсь.

Пришлось довольствоваться тем, что есть.

А точно ли кнопка выключения компьютера выключает компьютер полностью

На самом деле полного выключения компьютера с отключением его от питающей сети не происходит. Даже исходя из того, что цепи управления триггерной системы полупроводникового силового элемента должны постоянно получать питание, иначе включить компьютер не получится.

Секрет кнопки питания современных компьютеров скрывает то, что компьютер постоянно остаётся включенным в силовую сеть. Только отключением подаваемого напряжения через сетевой фильтр или UPS на блок питания компьютера, можно обесточить компьютер, таким образом действительно отключить компьютер от силовой сети.

В прошлых версиях реализации сетевых выключателей используемых в компьютерах, происходило реальное отключение компьютера от питающей сети. Но совершенствование модели подачи питания, привело к тому, что теперь компьютер той самой кнопкой выключения питания не отключается от сети.

  • http://easyelectronics.ru/vklyuchit-vyklyuchit-sxemy-upravleniya-pitaniem.html
  • http://xn—–7kcglddctzgerobebivoffrddel5x.xn--p1ai/kommunikatsii/elektronika/854-vklyuchenie-vyklyuchenie-pitaniya-odnoj-knopkoj-v-tom-chisle-i-neskolkikh-ustrojstv-video
  • https://multiblog67.ru/raznoe/28-kompyuternoe-zhelezo/177-knopka-vyklyucheniya.html

Что такое операционный усилитель

Операционный усилитель (ОУ) англ. Operational Amplifier (OpAmp), в народе – операционник, является усилителем постоянного тока (УПТ) с очень большим коэффициентом усиления. Словосочетание «усилитель постоянного тока» не означает, что операционный усилитель может усиливать только постоянный ток. Имеется ввиду, начиная с частоты в ноль Герц, а это и есть постоянный ток.

Термин «операционный» укрепился давно, так как первые образцы ОУ использовались для различных математических операций типа интегрирования, дифференцирования, суммирования и тд. Коэффициент усиления ОУ зависит от его типа, назначения, структуры и может превышать 1 млн!

Какую фанеру выбрать?

Корпус акустических колонок должен быть достаточно жестким, чтобы гарантировать оптимальное отражение/поглощение звуковых волн определенной мощности и частоты. Для этого можно использовать самые разнообразные материалы: пластик — относится к категории бюджетной техники, стекло, металл или твердую резину. Однако древесина считается самым лучшим решением. Цельное дерево для этой задачи используется редко, в основном применяют другие варианты:

ДСП — одно из главных преимуществ материала — доступность. Но, чтобы добиться хорошего звучания, нужно использовать плиты высокой плотности, толщина которых не меньше 16 мм. Это позволит снизить резонанс, а также исключить появление собственных призвуков. Сырье также нужно дополнительно облицовывать другими материалами или обрабатывать специальными красками, чтобы защитить от влаги и повреждений;
МДФ — возник в результате усовершенствования производственной технологии, которую использовали для изготовления ДСП. К преимуществам материала относят высокую механическую жесткость, а также способность хорошо поглощать звуковые колебания;
фанеру — оптимальный выбор. Чтобы получить качественное изделие, нужно отдавать предпочтение сырью высокого сорта. Лучшим вариантом станет многослойная фанера с 12 слоями и не меньше. Этот материал обладает хорошими поглощающими свойствами, слабо подвергается расслоению, а еще он намного легче ДСП или МДФ

Что касается породы дерева, то специалисты рекомендуют обратить внимание на сосну или дуб. С их помощью можно создать неплохой резонанс, а еще они характеризуются исключительными эстетическим свойствами.

Типы конструкций

Прежде чем приступить к активной фазе изготовления корпуса своими руками для домашней акустической системы, рассмотрим, какие бывают типы конструкций.

Открытые системы

На щиток больших размеров монтируются динамики. Края щитка загибаются назад под прямым углом, а задняя стенка конструкции совсем отсутствует. В данном случае акустическая система имеет весьма условный короб. Подобная модель годится для больших помещений и плохо подходит для воспроизведения музыки с низкими частотами.

Привычные конструкции в виде коробов со встроенными динамиками. Имеют широкий диапазон звучания.

С фазоинвертором

Такие корпуса, кроме динамиков, наделены дополнительными отверстиями для прохождения звука (фазоинвертор). Это дает возможность воспроизведения самых глубоких басов. Но конструкция проигрывает закрытым коробам в четкости артикуляции.

С пассивным излучателем

В данной модели полую трубку заменили на мембрану, то есть установили дополнительный драйвер для низких частот, без магнита и катушки. Такая конструкция занимает меньше места внутри корпуса, а значит, и размер короба можно уменьшить. Пассивные излучатели помогают добиться чувствительной глубины баса.

Акустический лабиринт

Внутреннее содержание корпуса выглядит как лабиринт. Закрученные изгибы являются волноводами. Система имеет очень сложную настройку и стоит немалых средств. Но при правильном изготовлении происходит идеальная подача звука и высокая точность басов.

Используемые в схеме детали

В качестве операционного усилителя можно использовать микросхемы К140УД6, К140УД7, К140УД601, К140УД701 или зарубежные аналоги (с учётом их другой цоколёвки).

Резисторы в эмиттерных цепях транзисторов нужны для выравнивания токов транзисторов и ограничения их бросков в моменты переключения. При небольших тока нагрузки достаточно будет использовать один выходной каскад, тогда эти резисторы в эмиттерных цепях можно исключить. При значительной нагрузке (до 10 А и выше) следует использовать параллельное включение транзисторов (показано на схеме зелёным цветом). Номинал этих резисторов может быть от 0,05 до 0,2 Ом при мощности не менее 5 ватт (зависит от мощности и тока нагрузки). Все остальные резисторы в схеме — типа МЛТ0,25.

Транзисторы можно использовать типов: КТ805/КТ837, КТ819/КТ818, КТ827/КТ825 или аналогичные импортные. Диоды VD1 и VD2 предназначены для исключения шунтирования транзисторами устройства цепей нагрузки. Они могут быть типа КД226, КД210, КД237 и другие, в зависимости от максимального тока нагрузки.

Транзисторы устанавливают на теплоотводы достаточного размера. Размеры теплоотводов определяются только тем, насколько нагрузка будет не сбалансирована. Чем больше не сбалансирована, тем больше площадь радиаторов.

Настройки этот делитель однополярного напряжения не требует, правильно собранная схема начинает работать сразу. Резистор Rрег предназначен для установки равенства выходных двухполярных напряжений.

В случае появления «биений» выходного напряжения в результате возбуждения и самогенерации, необходимо уменьшить значение резистора R4, увеличив при этом значение обратной отрицательной связи.

Микросхема ОУ может быть ограничена по питанию до 15 вольт в «плече» (в зависимости от её типа), поэтому для получения бОльших выходных напряжений необходимо подключать питание к выводам 4 и 7 через добавочные сопротивления и соответствующие стабилитроны, но при этом возрастёт и нижний уровень выходных напряжений. Стабилитроны следует зашунтировать конденсаторами порядка 0,1…1,0 мкФ.

В некоторых микросхемах ОУ предусмотрена возможность регулировки баланса нуля выходного напряжения с помощью внешнего подстроечного резистора. Но при изменении напряжения входного питания, будет необходима его подстройка, поэтому в данной схеме эта функция не используется.

Схема стабилизатора была собрана и испытана на практике. При всей своей простоте обеспечивает хорошие показатели и надёжность, не занимает много места и может быть размещена в корпусе вашего «исходного» однополярного БП. При этом для нормальной работы БП в однополярном режиме, следует предусмотреть переключатель S1 для отключения двуполярной приставки, чтобы она не оказывала никакого влияния на него. Также, на выходе основного БП полезно будет поставить дополнительный предохранитель F1 на ток, соответствующий максимально возможному току двуполярной нагрузки.

Чем больше мощность, тем хуже…

Часто радиолюбители стараются сделать свой усилитель как можно мощнее (типа, так круче), да и аудиофилы зачастую оснащают свои системы усилителями с мощностью в разы превышающей необходимую для озвучивания обычной комнаты до нормального уровня громкости, мотивируя тем, что так получается больший динамический диапазон. Такие усилители (большой мощности) порой решают одни проблемы, но создают другие.

Индуктивность проводников питания является основным «слабым звеном» усилителей мощности класса АВ. В таких усилителях выходные транзисторы включаются и выключаются поочередно, соответственно по плюсовой и минусовой шинам питания протекают полуволны зарядных токов.

Если эти импульсы через емкостные и индуктивные связи попадут в звуковой тракт это приводит к ужасному размытому звучанию.

Такое происходит, если какая-то чувствительная дорожка (проводник) проходит рядом с шиной питания. Бифилярная свивка проводов питания эффективно подавляет излучаемые помехи за счёт взаимной компенсации положительной и отрицательной полуволн.

На печатной плате этот метод можно реализовать, если шины питания расположить друг над другом с двухсторон платы (требуется двухсторонняяя печатная плата)

Достойный образец проектирования печатной платы для усилителя мощности — это конструкция Ultra-LD 200W, представленная в одном из номеров журнала «Практическая электроника каждый день». На печатной плате этого усилителя реализованы все рекомендации по монтажу, представленные в данном цикле статей. И во многом за счёт этого удалось получить уровень шумов -122 дБ и уровень нелинейных искажений ниже 0,001%.

Заземление одной стороны печатной платы хорошо работает в высокочастотных и слаботочных конструкциях. Для усилителей мощности это не подходит, потому как трудно предсказать протекание токов в зависимости от выбора точек заземления.

В современных ламповых усилителях часто общую шину делают в виде отрезка тостого лужёного провода. Многие гуру проповедуют разводку звездой с единственной точкой подключения. Бывают случаи, когда при таком подходе усилители плохо работают. Сказывает большое количество длинных проводов, которые снижают стабильность конструкции.

Как правило, в хорошем усилителе есть несколько точек заземления.

Управление светом при помощи импульсных реле

Напоминаю, импульсное (бистабильное) реле – это такое реле, которое меняет своё состояние каждый раз, когда на него приходит воздействие с выключателя.

Читайте мою давнишнюю статью По устройству и подключению импульсного реле (бистабильного выключателя) от белорусской фирмы Евроавтоматика ФиФ.

Большой плюс импульсного реле – к его входу можно подключать сколько угодно выключателей (точнее, кнопок без фиксации), в разумных пределах.

Минусы –

  • Мы зависим от контроллера и его программы, которые могут подвести в результате помехи и других воздействий, включая время службы.
  • Не всем нравится то, что какая-то автоматика решает, когда свет должен быть выключен. Некоторые хотят полностью контролировать ситуацию, а не ждать, пока свет выключится по таймеру. Или не выключится? А счетчик мотает?
  • Не все любят, когда вместо привычных выключателей, в которых всё ясно/понятно, используются кнопки без фиксации.

Справедливости ради скажу, что такие реле сейчас довольно часто ставятся в домах, где есть комнаты с несколькими входами/выходами.

Однако, что делать, если импульсное реле по каким-то причинам поставить нельзя? Например, хозяин не хочет ставить кнопки, потому что уже купил выключатели? А перекрестные и проходные переключатели не поставить, т.к. в стене заложено по 2 жилы на выключатель? Или в продаже нет перекрестных выключателей (кстати, в Таганроге с этим проблемы)?

Предлагаю выход:

Схемы подключения разных видов выключателей

Разбираясь, как подключить выключатель света, с простыми устройствами мастеру справиться несложно, вопросы возникают с 2-х, 3-х клавишными приборами, сенсорными и проходными механизмами. Первое, что делают, отключают питание на источник света, розетку. Затем проверяют наличие инструментов, выполняют работы по предлагаемой инструкции.

Подключение одноклавишных выключателей

Устройство устанавливают на разрыв фазы. Нулевой провод от коробки направляют на светильник, фазу – на выключатель. При запуске сеть замыкает или размыкает, что приводит к горению или потуханию светильника.

Этапы работ:

  • от распредщита в коридоре к коробке тянут кабель;
  • жилу с фазой присоединяют к выходу коммутатора;
  • синий провод (ноль) соединяют с шиной нуля;
  • надевают на коробку заглушку;
  • провода фиксируют на клеммах переключателя.

Клавиши устанавливают на место в подрозетнике, запускают питание – работы закончены.

Как подключить бонусы Спасибо от Сбербанка

Подключение двухклавишных выключателей

Подключить двухклавишный выключатель к двум лампочкам не сложнее, чем работать с предыдущим устройством. Самыми популярными моделями считают корпуса с одним входом фазы и парой раздельных выходов. В этом случае на лампы из монтажной коробки выходят нулевые жилы, а фазу подключают к входу. От зоны выхода через распределяющую коробку отходит собственный проводник. Также собственный провод идет на каждый светильник, включают их одновременно или поочередно.

Подключение выключателей на три клавиши

Подключить тройной выключатель от коробки не сложнее, чем двойной. Алгоритм работы тот же, один вход фазы – три выхода нулевого провода. Каждый кабель подключают к отдельным группам светильников.

Подключение перекрестных выключателей

Схема, как подключить перекрестный выключатель к лампочке, покажет все в подробностях. Устройства применяют для управления тремя и более осветительными приборами. В систему встраивают проходные модели, коммутирующий прибор бывает с 1, 2 клавишами.

Особенности работы:

  • перекрестный прибор ставят в разрыв пары жил;
  • получается, что с одной стороны к устройству подключают два кабеля от первого проходного прибора, а с другой стороны – от выхода второго проходного переключателя.

Через перекрестный прибор включают освещение вне зависимости от положения клавиш в неработающей сети. Если же свет горит, отключают его также любой клавишей. Управление доступно из любой точки.

Подключение проходных выключателей

Перед тем как подключить проходной выключатель, определяют способность устройства – это тип переключателя, внешне идентичный одноклавишным модулям.

Особенности:

  1. Нулевой кабель выкладывают так же, как для стандартных модулей. Фаза из распределительной коробки на вход каждого устройства.
  2. Вход второго переключателя оснащают жилой, направляемой на лампочку.
  3. Второй выход первого устройства подсоединяют через распределительную коробку к третьему выходу из второй модели.
  4. Третий выход первого проходного переключателя стыкуют жилой с выходом второго устройства.

Переходные приборы оснащены двойными, тройными клавишами, поэтому их применяют для нескольких светильников или групп.

Почему только кнопочные?

При использовании импульсных реле, применяются уже другие виды выключателей – кнопочные, звонковые или нажимного типа.

Обратите внимание, простые одноклавишники или двухклавишники здесь не подойдут. За редким исключением, например для реле Меандр РИО-2

Но об этом чуть позже

За редким исключением, например для реле Меандр РИО-2. Но об этом чуть позже.

Исходя из этого факта, на импульсные реле нельзя подавать сигнал слишком длительное время, иначе у него сгорит катушка. Некоторые производители предупреждают, что время непрерывной подачи сигнала на их моделях должно составлять не более 1 минуты.

А некоторые детки очень любят поиграться с такими кнопочками, после чего они и выходят из строя.

Кнопочные выключатели внешне напоминают обычные, только
внутри их конструкции имеется возвратная пружинка, которая после каждого
нажатия возвращает клавишу и контакт в исходное положение.

Есть и двухклавишные кнопки в одном корпусе.

Они пригодятся, когда вы захотите подключить от одного реле общее освещение на кухне и одновременно подсветку рабочей зоны столешницы.

Либо в зале – люстру и подсветку по периметру, плюс
отдельно бра.

Многие вместо специальных выключателей используют подпружиненные
кнопки для дверных звонков.

Немного о блоках питания (часть II)

Опубликовано: 23 марта, 2021 • Рубрика: Блоки питания

READ Как подключить люстру к натяжному потолку

Казалось бы, что может быть проще — взял блок питания, подключил его двумя или тремя проводами к усилителю и всё. должно запеть? Оказывается не всегда. Как мы уже выяснили в первой части этого цикла статей, тут существует множество подводных камней.

Продолжим разбираться в хитросплетении питающих усилитель проводов. И как ни странно, больше всего проблем может доставить общий (земляной) проводник.

Для начала исправим одну оплошность. В первой части статьи была опубликована схема двухполярного блока питания усилителя, но отсутствовала его монтажная схема.

Вот вам и то, и другое:

Двухполярный блок питания усилителя мощности.

Монтажная схема двухполярного блока питания усилителя мощности

По сути здесь два «отзеркаленных» однополярных блока.

Двухполярное питание из однополярного на микросхеме TPS65133

Главным достоинство этого преобразователя является то, что выходное напряжение составляет ±5В независимо от входного напряжения, которое может быть от 2.9 до 5 вольт (допустимо подавать до 6 вольт). Т.е. микросхема создана для непосредственного использования с 3.6 вольтовыми аккумуляторами. Но никто не запрещает запитать ее от usb или блока питания.

Частота преобразования тут 1.7МГц. Для аудио устройств это отличный вариант. При этом, для работы не требуется использование трансформаторов, которые нужны в большинстве SEPIC конвертеров. Для преобразования требуется только индуктивность которая, благодаря столь высокой частоте, достаточно мала.

Схема преобразователя однополярного напряжения в двухполярное на TPS65133 выглядит следующим образом:

Конденсаторы желательно устанавливать танталовые. Так же будет не лишним поставить дополнительно конденсаторы по 0.1 мкФ для фильтрации ВЧ-помех.

Что касается такого параметра как выходной ток, то тут все очень хорошо. Выходной ток может достигать 250 мА на плечо. Производитель заявляет, что при выходном токе от 50 до 200 мА КПД преобразователя превышает 90%, что является очень хорошим показателем для применения в портативной технике.

Разновидности и характеристики импульсных реле

Импульсные реле могут иметь модульную конструкцию, для установки на DIN рейку в щитке, но, также выпускаются устройства различных размеров и форм, имеющие иной способ крепления. Модульные устройства, выпускаемые различными производителями, также могут отличаться внешним видом. Например, импульсные реле фирмы ABB, Schneider Electric, имеют индикаторы работы и ручной рычажок управления механизмом.

Будет интересно Описание и принцип работы соленоидов

Обозначение клемм подключения тоже может различаться. По ходу развития, изделия одной марки также изменяются. Например, реле ранее популярной серии E251 от компании ABB уже снятое с производства, выглядит так, а его аналог Е290, теперь имеет несколько иной вид. Различаются внутренней схемой также серии от одного изготовителя. Основными характеристиками импульсных реле являются:

  • Количество и первоначальное состояние контактов;
  • Номинальное управляющее напряжение;
  • Ток срабатывания катушки;
  • Номинальный ток силовой цепи;
  • Длительность импульса управления;
  • Количество подключаемых выключателей;

Последняя указанная характеристика зависит от наличия ламп подсветки в выключателях, суммарный ток которых может привести к срабатыванию катушки. Если импульсное реле электронное, то оно подвержено влиянию радиопомех и наводок от окружающих силовых цепей. Поскольку существует большое разнообразие бистабильных реле, то без привязки к конкретному производителю можно рассмотреть лишь обобщённую схему подключения.


Схема срабатывания реле

Общей особенностью данных реле является то, что они не имеют встроенной защиты от перегрузки и должны быть защищены с помощью автоматических выключателей.

Поскольку для срабатывания катушки требуется незначительный ток, по сравнению коммутируемой нагрузкой, то цепи управления могут осуществляться при помощи кабелей с поперечным сечением жил 0,5 мм², но в этом случае для данной электропроводки должен быть установлен отдельный защитный автомат, для предотвращения возгорания проводов при их коротком замыкании.

Как правило, производители указывают время, в течение которого катушка может находиться под напряжением. Например, у ABB оно не ограничено, но у менее именитых брендов импульсные реле могут нагреваться, когда в цепи катушки будет электрический ток продолжительное время, поэтому, покупая импульсное реле, необходимо уточнять данный параметр, ведь возможны случаи, когда случайно передвинутая мебель окажется причиной постоянного нажатия кнопки выключателя.

Если заглянуть в каталог ABB, то можно увидеть что существуют импульсные реле (старая серия — E256, новый аналог E290-16-11/), имеющие по одному нормально открытому и закрытому контакту, фактически работающие в режиме переключателя. Такие устройства могут использоваться для управления осветительными системами на производстве, для переключения между основным и дежурным освещением. Благодаря такой функции производственное помещение никогда не окажется в темноте по вине персонала, забывшего включить дежурный свет – переключение осуществляется одним нажатием на клавишу выключателя.


Импульсное реле с цифровым управлением

Существует также возможность управлять освещением как локально (управляется одно импульсное реле при помощи нескольких параллельно подключенных кнопок), так и централизованно, (одновременно для нескольких одинаковых устройств) при помощи двух клавиш – включения и выключения. Например, схема подключения реле серии E257. Здесь нажатием центральных кнопок (ON, OFF) управляются все реле, плюс каждое имеет свое локальное управление. В обновлённой линейке ABB используется принцип комбинирования модулей для создания многоуровневых управляющих систем.

Использование различного управляющего напряжения также расширяет функциональные возможности устройств управления освещением. Для примера, импульсное реле серии E251-24 (его обновлённый аналог E290-16-10/24)управляется постоянным напряжением 12В (или переменным 24В), что делает безопасной работу выключателей, находящихся во влажных средах, где есть риск поражения электрическим током.

Будет интересно Что такое тепловое реле

Такое устройство с успехом может использоваться для управления освещением в бане или сауне, где применение устройств, работающих с сетевым напряжением, не допускается. К тому же низковольтный управляющий сигнал может генерироваться различными компьютеризированными устройствами, что позволяет автоматизировать процессы управления освещением.

Питание операционных усилителей

Если выводы питания не указаны, то считается, что на ОУ идет двухполярное питание +E и -E Вольт. Его также помечают как  +U и -U, VCC и VEE, Vc и VE. Чаще всего это +15 и -15 Вольт. Двухполярное питание также называют биполярным питанием. Как это понять – двухполярное питание?

Давайте представим себе батарейку

Думаю, все вы в курсе, что у батарейки есть “плюс” и есть “минус”.  В этом случае “минус” батарейки принимают за ноль,  и уже относительно нуля считают напряжение батарейки. В нашем случае напряжение батарейки равняется 1,5 Вольт.

А давайте возьмем еще одну такую батарейку и соединим их последовательно:

Итак, общее напряжение у нас будет 3 Вольта, если брать за ноль минус первой батарейки.

А что если взять на ноль минус второй батарейки и относительно него уже замерять все напряжения?

Вот здесь мы как раз и получили двухполярное питание.

Инструкция: как сделать корпус?

После выбора материала нужно определиться с размерами корпуса. При наличии под рукой «внутренностей» для колонки (провода, динамик, и прочее) не помешает подобрать такой размер, чтобы всё помещалось, но при этом не располагалось слишком свободно. Избыток пустого места внутри корпуса колонки может стать причиной поломок.

Классически электроника колонок заключается в прямоугольный параллелепипед оптимального размера, но не обязательно делать такую форму окончательной: после черновой сбивки у создателя останется возможность добавить декоративных деталей, которые изменят форму и внешний вид колонки.

После замеров следует непосредственный распил первичного материала с целью получить необходимые детали. Грубо говоря, потребуется шесть пластин, три пары разного размера, или все одинаковые – это уже решать создателю. Не стоит забывать о том, что нахлёст между соседними листами должен быть равен толщине материала.

После изготовления всех необходимых деталей останется только соединить их. Вид соединения полностью зависит от предпочтений владельца – это может быть клей, гвозди, саморезы, строительные скобы, и всё, что угодно. Нужно лишь оставить одну плоскость для помещения внутрь электроники.

Подставки легко сделать из мелких гирек, предназначенных для строительных весов. Эти небольшие, а главное, недорогие предметы, отлично впишутся в интерьер и справятся со своей задачей.