Водяная система охлаждения процессора и как она работает

Оглавление

Замена кулера на видеокарте

Привет друзья! На жаргоне компьютерных мастеров такая операция называется «умелые ручки», как всё примерно делать, я покажу в сегодняшней статье.

На выходных мне довелось навестить своего приятеля и пока он что-то ремонтировал в своей машине, я заметил в углу его гаража старенькую видеокарточку с большим радиатором и без кулера, находка оказалась легендарной (когда-то) NVIDIA GeForce 9600 GT. Приятель объяснил, что год назад у неё стал шуметь вентилятор и так как он был неразборным, его пришлось просто выбросить и купить новую видеокарту, а эта так и осталась лежать невостребованной.

Также в углу стоял старый системный блок с корпусным вентилятором диаметром 80 мм и у меня возникла идея.

На видеокарте отрезаем старый кулер и зачищаем провода.

Берём корпусной вентилятор диаметром 80 мм от старого компьютера, обрезаем на нём штекер и зачищаем окончания проводов.

Берём четыре самореза и закручиваем их в кулер с четырёх сторон

Устанавливаем корпусной вентилятор на радиатор видеокарты и завинчиваем саморезы. 

Крепите осторожно, чтобы саморезы не врезались в печатную плату видеокарты

Соединяем питающие провода по цветам и изолируем изолентой.

Устанавливаем видеокарту в системный блок. Мои опасения о том, что видеокарта с самодельным кулером не поместится в системный блок не оправдались. Видюшка установилась и после включения компьютера прекрасно заработала с новым кулером.

Замена термопасты на видеокарте 

Но без проблем всё же не обошлось. После установки видеокарты в системный блок я погонял её в программе FurMark и температура за 5 минут поднялась до 95 градусов, я был уверен, что дело не в кулере, всё-таки видеокарта провалялась в гараже целый год и скорее всего потеряла свои свойства термопаста. 

Снимаем видеокарту и заменяем термопасту. Используем недорогую DEEPCOOL Z3, продаётся в шприце, которого хватит в среднем на три-четыре процессора.

С обратной стороны видеокарты отворачиваем четыре винта крепления радиатора.

Снимаем радиатор вместе с кулером и очищаем его от остатков предыдущей термопасты.

Также осторожно очищаем от старой термопасты графический процессор

Выжимаем из шприца небольшое количество термопасты (можете чуть меньше чем я).

В упаковке от термопасты находится специальная карточка похожая на визитку, она специально предназначена для растирания термопасты ровным слоем по поверхности графического процессора.

На карточке даже имеется инструкция в виде картинок.

Осторожно растираем карточкой термопасту ровным слоем по поверхности графического процессора

Вот и всё

Ставим осторожно на место радиатор и прикрепляем его к печатной плате видеокарты четырьмя винтами

Проверяем видеокарту на работоспособность программой FurMark (волосатый бублик)

Запускаем программу FurMark.

Данный тест сравним с запуском на компьютере современной игры и серьёзно нагружает видеокарту, но в течении 30 минут (столько длится тест) температура видеокарты не поднялась выше 68 градусов.

 

 

Теперь у моего друга есть запасная видеокарта!

⇡#Совместимость и установка

Перечень видеокарт, с которыми совместим водоблок ID-Cooling ICEKIMO 240VGA, приведён в таблице.

Если вы не найдёте в этом перечне свою видеокарту, то не стоит расстраиваться, поскольку водоблок совместим со всеми видеокартами, у которых монтажные отверстия графического процессора размещены по углам квадрата 58,4 × 58,4 или 53,3 × 53,3 мм, то есть с большинством современных видеокарт. Главная проблема заключается в другом.

Как вы уже знаете, в комплекте ID-Cooling ICEKIMO 240VGA нет отдельных радиаторов для элементов силовых цепей видеокарт, поэтому перед приобретением такой СЖО в свою систему следует убедиться, что на вашей видеокарте есть отдельный радиатор для VRM и что он не снимается вместе с основным радиатором графического процессора, как это довольно часто бывает. Кроме того, не рекомендуется устанавливать водоблок ICEKIMO 240VGA на видеокарты, у которых силовая часть вынесена вперёд, в зону между GPU и видеовыходами.

Такие видеокарты, как правило, не относятся к моделям с высоким уровнем тепловыделения, и устанавливать на них систему жидкостного охлаждения не имеет смысла, так что это вроде как не страшно. Но всё равно обязательно проверьте данный момент перед покупкой.

Для закрепления водоблока на графическом процессоре используется универсальная усилительная пластина и гайки с накатанной головкой с шайбами.

Усилие прижима очень высокое. Пожалуй, даже не стоит затягивать эти гайки до упора, чтобы не повредить кристалл графического процессора.

Что касается радиатора с вентиляторами, то его можно разместить в любых предназначенных для 240-мм радиатора местах корпуса системного блока. Но и здесь будет одна проблема, которую мы сегодня уже упоминали, – жёсткие шланги и неповоротные фитинги. В итоге именно из-за этого установить радиатор с вентиляторами на переднюю стенку корпуса системного блока Thermaltake Core X71 нам не удалось, хотя длины шлангов хватало. Не получилось разместить радиатор и на верхней стенке корпуса, поскольку при установленном на процессор суперкулере Phanteks PH-TC14PЕ попросту не хватало запаса по толщине. Поэтому единственным возможным вариантом стала установка радиатора с вентиляторами на перегородку корпуса прямо под материнской платой с видеокартой.

Боковую стенку корпуса можно было бы спокойно закрыть, но в таком случае эффективность охлаждения ID-Cooling ICEKIMO 240VGA была бы серьёзно ограничена, поэтому мы так и тестировали систему – со снятой боковой стенкой. Благо, как показывают наши предыдущие тесты, разницы в температурах компонентов в хорошо проветриваемом вентиляторами корпусе и в корпусе с открытой боковой стенкой практически нет.

Добавим, что во время работы СЖО у неё подсвечиваются вентиляторы радиатора, вентилятор в кожухе и логотип на верхней панели кожуха.

Выглядит красиво, но возможности синхронизировать эту подсветку с подсветкой материнской платы или других устройств у ID-Cooling ICEKIMO 240VGA нет. Для красоты лучше подойдёт система ID-COOLING AURAFLOW 240.

Система водяного охлаждения за 600 рублей своими руками

Согласитесь, температура 66 о С для Атлона 1000 МГц (не смейтесь, мой принцип – главное не железо, а то, что его окружает) в состоянии покоя, а при 100% загрузке 75 о С, многовато. Поэтому родился данный агрегат.

Данная СВО изначально задумывалась как внешняя – поставил ее в угол и пусть там стоит, а к компьютеру подходят только два шланга, по моему мнению, и задумкам на будущее системный блок можно напичкать чем-нибудь другим, например – неоновая подсветка, УФ подсветка, красивые круглые шлейфы, светящиеся в УФ и т.д. К сожалению, чертежи некоторых элементов не сохранились, да они и не нужны – каждый делает все под себя, отталкиваясь от тех материалов, которыми располагает. Главное принцип.

Как выбрать водяное охлаждение?

Существование разных моделей СВО разрешает приобрести установку в соответствии с заданными параметрами, которая оптимально подойдет для конкретного компьютера. Водяное охлаждение для процессора желательно подбирать с учетом следующих нюансов:

  1. Большее число вентиляторов помогает увеличивать эффективность системы, снизить скорость вращения.
  2. В корпусе должно хватать места под радиатор, шланги и кулеры.
  3. Длина шлангов должна соответствовать размерам корпуса.
  4. Подбирать мощность СВО в соответствии с требованиями по теплоотводу (величине TDP компьютера).
  5. Водоблок лучше приобретать из меди.
  6. Желательно наличие регулировки скорости вращения кулеров.
  7. Вентиляторы и помпа СВО, издающие шума более 40-ка дБ, будут вызывать дискомфорт.
  8. Дизайн – подсветка, теплоноситель с флуоресцирующими компонентами и прозрачные трубки важны исключительно при наличии прозрачной крышки корпуса.

Жидкость для водяного охлаждения

Применять в качестве хладагента простую воду непрактично и опасно. Трубки быстро загрязняются примесями, а в случае протечек крайне высокий риск замыкания. Антифриз является токсичным веществом и проводит электричество. Самый дешевый вариант – заправить водяное охлаждение ПК дистиллированной водой. Специалисты советуют не экспериментировать, а перейти к использованию готового теплоносителя от проверенных брендов.

Примеры качественного хладагента для водяного охлаждения на ПК:

  1. Fluid XP+ Ultra.
  2. Feser One.
  3. Mayhems Pastel Coolant.

Корпус под водяное охлаждение

Самым габаритным компонентом СВО является радиатор. При выносе его наружу пользователь теряет в мобильности, поэтому корпус для ПК с водяным охлаждением желательно подбирать основательно. Оптимальный вариант – модели с посадочными местами в верхней крышке под типоразмеры радиатора 360-420 мм. Желательно, чтобы свободного места под верхней панелью хватало для монтажа 3-х секционного теплообменника толщиной от 45 мм.

Небольшой FAQ по водяному охлаждению

Теплопроводность металлов и других веществ :

Ответы на вопросы уже решенные в этой ветке:

№ 1 Антифриз (Тосол) нужен: 1. Если в системе жидкостного охлаждения присутствует железо/чугун или коррозирующие металлы; 2. Если на систему (жидкость) попадают солнечные лучи или достаточное кол-во дневного света; 3. Если t жидкости в системе ниже 5’C. 4. Не рекомендуется добавление спирта водки Во всех других случаях ПРЕДПОЧТИТЕЛЬНЕЙ использовать дистиллированную/очищенную воду.

№ 3 Большая скорость жидкости не нужна. Она быстро заберет тепло в ватерблоке, это хорошо. Но она также не успеет толком охлаждаться в радиаторе, так как слишком быстро будет через него проходить. Физический закон обратим. Если вода быстро забирает тепло, то она отдает его с той же скоростью. Притом вода находится одинаковое время в ватерблоках и радиаторе независимо от расхода. Давайте рассмотрим это на примере. У нас имеется контур, где 5% жидкости находится в ватерблоке, 40% в радиаторе, а остальная жидкость — в шлангах, бачке и т.д. Помпа выключена, расход нулевой. Теперь включаем помпу и пусть она прокачивает через контур 300 л/ч. Все еще 5% воды находится в ватерблоке и 40% в радиаторе, и это соотношение не изменится никогда. Теперь пусть помпа начнет прокачивать через контур 600 л/ч вместо 300л/ч. Скорость жидкости увеличилось в 2 раза, она в 2 раза быстрее проходит через ватерблок и через радиатор, но скорость теплопередачи как физическая величина неизменна. Во втором случае вода хоть и течет в 2 раза быстрее, но и «кругов» по контуру сделает в 2 раза больше. Тем самым достигается равновесие. Расход в контуре на количество переносимого и рассеиваемого тепла не влияет. СВО рассеет столько тепла, сколько ей обеспечат процессор, видеокарта и т.д. Расход (но, не только он один) определит только конечную температуру «точек» охлаждения. Доплнение: Ламинарное течение (от лат. lamina — пластинка), упорядоченное течение жидкости или газа, при котором жидкость (газ) перемещается как бы слоями, параллельными направлению течения. Л. т. наблюдаются или у очень вязких жидкостей, или при течениях, происходящих с достаточно малыми скоростями, а также при медленном обтекании жидкостью тел малых размеров.

Турбулентное течение (от лат. turbulentus — бурный, беспорядочный), форма течения жидкости или газа, при которой их элементы совершают неупорядоченные, неустановившиеся движения по сложным траекториям, что приводит к интенсивному перемешиванию между слоями движущихся жидкости или газа.

Применительно к нашей теме можно сказать, что отличия между этими двумя типами в том, что в «ламинарных» ватерблоках сопротивление току вода ниже, а значит его скорость выше. Это приводит к тому, что вода очень быстро проходит свой путь между входным и выходным штуцерами. Поэтому большая часть поверхности ватерблока омывается водой низкой температуры. В противовес этому достоинству есть и недостаток. Он кроется в том, что теплопроводность воды в отличии от её теплоемкости очень низкая и поток, который непосредственно соприкасается с поверхностью блока быстро нагревается и теплообмен между медью и водой прекращается. При этом нижние пограничные слои воды не успевают передать тепло верхним.

Турбулентный же поток является антиподом ламинарного, он за счет завихрений и перемешивания воды более равномерно распределяет тепло внутри потока, но его скорость ниже, чем у ламинарного за счет большего сопротивления внутренней структуры блока, создающего завихрения.

Поэтому очевидно, что для построение эффективного блока нужно найти «золотую середину».

Припой

Использовать оловянно-свинцовые припои для пайки алюминия не рекомендуется. И дело здесь не в их составе или прочности. Дело в том, что они не в состоянии обеспечить надлежащую антикоррозионную защиту соединения. Если вы все же решили использовать обычный припой, то перед тем как запаять алюминиевый радиатор, вам придется позаботиться о приобретении специального лака, который впоследствии будет защищать отремонтированный участок от коррозии.

Но лучше сразу купить специальный припой, предназначенный именно для этого металла. Сегодня в продаже можно найти множество составов для пайки алюминия, содержащих серебро, медь, цинк, кремний и т.п. Из недорогих припоев российского производства можно отметить такие смеси, как ЦОП-40 (олово – 60%, цинк – 40%) и 34-А (алюминий – 66%, медь – 28%, кремний – 6%). Процентное содержание цинка в припое определяет прочность соединения и антикоррозионную стойкость. Иными словами, чем его больше, тем лучше.

Заклеивание пластиковых частей радиатора авто

Большинство средств для ремонта пластика являются двухкомпонентными — готовые составы не дают столь мощной адгезии с поверхностью. Как правильно заклеивать повреждения на радиаторе? Вот техника работы пошагово:

  1. Приготовить оба компонента для сваривания шва на бачке охлаждения, а также наждачку, перчатки, ватные палочки, обезжириватель (ацетон).
  2. Область вокруг протечки очистить от грязи, пыли, жира, применяя ацетон.
  3. Смешать компоненты клея, как указано в инструкции. Капнуть средство на зону трещины. Некоторые составы наносятся иным образом. Вначале надо посыпать пластик порошковым средством, а после замазать жидким.
  4. Если дыра имеет большой размер, процедуру сделать в несколько приемов до ее полного затягивания.
  5. Через 15 минут обработать шов до гладкости наждачной бумагой с мелким зерном.

Также приклеить края трещины на пластике можно при помощи эпоксидного клея. Радиатор снимают, зашкуривают зону, обезжиривают. Эпоксидной смолой заливают место повреждения, просушивают сутки. Не стоит надеяться на долговечность такого шва — он может продержаться от силы пару недель, затем надо приобрести новую деталь автомобиля.

Помпа

Найти помпу достаточной производительности не составило труда. Поход в “царство золотой рыбки”, и на столе лежит чудо китайской техники с непонятным названием, но с серьезными характеристиками. Вот они: 

Проверка показала реальность заявленных характеристик. Но помпа требовала доработки. Выявилось, что при работе она вибрирует, и эта вибрация будет передаваться на корпус компьютера и тут возникает неприятный гул. Ещё было слышно стрекотание, возникающее обычно из-за отсутствия жёсткого крепления крыльчатки с ротором.

Гул обусловлен тем, что помпа питается пульсирующим напряжением ~50 Гц, что создаёт пульсирующий крутящий момент на роторе. Свести вибрацию до приемлемого уровня всё же возможно при помощи вибропоглощающих материалов. Для механической развязки, из пластмассы, была вырезана площадка (на фото справа) с посадочными местами для присосок и отверстиями для винтиков которые через вибропоглощающие силиконовые шайбы прикручиваются к съёмному основанию помпы.

Ротор с крыльчаткой во время работы сильно прижимается к входному отверстию за счёт сил противодействия. В месте контакта происходит передача продольных колебаний ротора на корпус. Здесь так же для механической развязки приклеивается силиконовая шайба.

Во внутрь колпачка крыльчатки шприцем закачивается жидкий силиконовый герметик. Схватившись он обеспечивает жёсткое крепление ротора с крыльчаткой, тем самым избавив нас от стрекотания.

В результате этих действий помпа становится практически бесшумной.

Расширительный бачок изготавливается из плексигласа. Для нагревания узкой полосы, в месте сгиба, используется нихромовая проволока, натянутая при помощи пружинки и закреплённой на гвоздях. В результате гибки, формируется расширительный бачок прямоугольного сечения. 

Стык склеивается суперклеем. Сверху и снизу приклеиваются пластмассовые пластины (применялись старые компакт диски). Снаружи, для маскировки швов, бачок обклеивается тонким пластиком чёрного цвета (от коробки видеокассеты). Внутри бачка на входе помпы из белого тонкого пластика склеен рассекатель потока. Если этого не сделать то пузырьки воздуха не успевают подняться в бачке и непрерывно циркулируют, создавая сильный шум.

Модифицированная помпа.

Пайка

Для качественного проведения операции необходимо обзавестись припоем, флюсом, мощным паяльником и терпением. Очистив место подтекания от грязи и высушив его, наносят флюс, паяльную кислоту или канифоль. Наилучший результат показывает применение паяльной кислоты. Ее наносят на разогретую поверхность. Чтобы иметь возможность прогреть место пайки до нужной температуры, необходимо использовать мощный паяльник, минимум около ста ватт. Также можно использовать газовую мини горелку. После нанесения кислоты на место повреждения наносится олово и паяльником равномерно распределяется по поверхности. Проводить такую операцию лучше всего несколько раз. Если опыта маловато, то лучше всего в буквальном смысле слова попытаться залить большим количеством олова место протекания. Использовать слитую охлаждающую жидкость можно лишь после ее тщательной фильтрации.

Причины ремонта автомобильных радиаторов

Радиатору охлаждения может понадобиться ремонт по разным причинам. Неисправности могут возникнуть как вследствие естественного износа, так и в виду халатности владельца автомобиля. Возможно, устранение неисправности радиатора это лишь первый шаг в комплексном ремонте двигателя.

Можно выделить две основные неисправности автомобильных радиаторов, требующих ремонта:

  1. Течь охлаждающей жидкости;
  2. Закоксовка внутренних полостей.

Течи радиатора опасны по следующим причинам:

  • Уменьшение объема охлаждающей жидкости чревато превышением допустимой температуры в двигателе.
  • Течь может стать источником опасности для человека. В системе охлаждение создается высокое давление, а образование течи может вызвать своеобразный горячий “гейзер”. При попадании его на кожу или в глаза водитель получит серьезные ожоги.

Закупорка трубочек радиатора нарушает циркуляцию жидкости внутри него. В итоге сначала остывает нижняя часть теплообменника, а затем и полностью весь радиатор. А тем временем охлаждающая жидкость быстро нагревается, создавая опасность перегрева мотора.

  1. Закоксовка радиатора происходит обычно из-за образования накипи. Это особенно часто встречается у автомобилистов, которые заливают обычную воду в систему охлаждения двигателя. Чтобы избежать этого, узнайте что необходимо заливать в систему охлаждения двигателя.
  2. Иногда радиатор забивается смесью масла и антифриза. Это происходит, если моторное масло по каким-то причинам попадает в систему охлаждения. Утечка масла может быть не видна, а охлаждающая жидкость со временем превращается в “кисель”, который и забивает внутренние полости теплообменника.

О том как избавиться от подобных негативных явлений и избежать последующего дорогостоящего ремонта читайте в нашей инструкции по промывке системы охлаждения двигателя.

После того, как мы определились с неисправностями, давайте рассмотрим способы ремонта радиаторов охлаждения своими руками.

В чем заключается сложность пайки алюминия

Алюминий – очень специфический металл. Его особенность заключается в высокой химической активности, проявляющейся в образовании так называемой оксидной пленки на поверхности. Она появляется мгновенно при соприкосновении чистого металла с воздухом, вступая в реакцию с кислородом. И именно из-за нее запаять радиатор охлаждения алюминиевый привычным способом невозможно. Для этого потребуются дополнительные вещества, способствующие:

  • устранению оксидной пленки с поверхности;
  • снижению натяжения поверхности;
  • защите от неблагоприятных факторов, влияющих на процесс пайки;
  • улучшению растекания припоя.

Как установить водяное охлаждение на процессор?

Самостоятельный монтаж готовой СВО на бытовой компьютер является реальной задачей для рядового пользователя. Процесс установки выполняется по следующей схеме:

  1. Распаковать водяное охлаждение.
  2. Проверить комплектующие элементы на наличие дефектов.
  3. Желательно предварительно подключить помпу и проверить СВО на протечки перед установкой в корпусе.
  4. Примерить шланги и водоблок по месту.
  5. Шланги нужно крепить без перегибов, а фитинги установить с зазором от узлов ПК,
  6. Радиатор располагать лучше на верхней или передней панели.
  7. Подготовить элементы крепежа в соответствии с инструкцией.
  8. Монтировать вентиляторы на радиатор СВО.
  9. Направление воздушного потока должно соответствовать маркировке.
  10. Установить радиатор.
  11. Нанести термопасту и прикрепить водоблок.
  12. Подключить помпу и подсветку в соответствии со схемой, учитывая разновидность имеющихся разъемов.
  13. Подключить вентиляторы.
  14. Модели помпы с подключением по USB имеют ПО, которое помогает точно настроить работу агрегата. В простых моделях управление осуществлять путем изменения напряжения на разъемах.
  15. Настройку вентиляторов осуществлять с помощью утилиты или через BIOS.
  16. Протестировать работу СВО с устранением возникших дефектов.

https://youtube.com/watch?v=Pc1x5h5GgIQ%250D

Как часто нужно его менять?

Как мы уже говорили ранее, дело не в том, что есть момент, когда вы знаете, что ваш радиатор «просрочен» и вам нужно его заменить, но есть некоторые явные признаки, которые будут указывать на то, что он достиг конца своего срока службы. срок полезного использования, и вы увидите, что вынуждены это сделать. Как правило, при надлежащем обслуживании вам не нужно будет менять радиатор жидкостного охлаждения AIO в течение как минимум пяти лет, хотя, очевидно, это зависит от многих факторов, и это может быть 3 года, которые могут быть 8 или даже 10.

Ясно то, что, в отличие от радиаторов с воздушным охлаждением, радиатор с жидкостным охлаждением (в данном случае AIO или кастомный) не может работать бесконечно долго, и наступит время, когда он «попрощается», и у вас не будет выбора. но поменять его на новый.

Сравнение

Чтобы понять, что такое водяное охлаждение для ПК, плюсы и минусы такой системы, стоит сравнить его с самым популярным вариантом охлаждения. Как мы знаем, кулер представляет собой конструкцию из радиатора, через который проходят трубки теплоотвода и вентилятора. Такую систему легко устанавливать в корпус. Обычно она крепится на четырех винтах.

Причем после упаковки вам ничего не нужно делать, собирать отдельные части или что-то к чему-то докупать. Просто находите место на материнской плате и крепите туда ваше приобретение. К доступной стоимости и простоте монтажа добавляются и недостатки такого варианта.

Прежде всего, почему воздушное охлаждение меняют на жидкостное – из-за неэффективности первого. Особенно если пользователь желает осуществить критический разгон процессора, то обычный кулер с этим не справится. Также часто не хватает такой системы и там, где «сидят» две и более видеокарт.

Следующим недостатком являются габариты радиатора. Конечно, не во всех случаях. Но чаще всего у хорошего кулера очень высокий профиль, что вызывает неудобства в установке и помещение его в компактный корпус. И последнее – это шум. С ним сталкиваются все пользователи. Причем если в спокойном режиме можно и не услышать систему, то при максимальной нагрузке на ПК вентиляторы набирают обороты и создают много шума.

Виды водяного охлаждения

Производится множество моделей жидкостных охладителей для CPU, отличающихся мощностью и габаритами. В зависимости от особенностей конструкции различают следующие типы данных установок:

  1. Водяное охлаждение процессора внешнего типа – ватерблоки находятся в корпусе ПК, но сама установка вынесена наружу, представляя собой отдельный модуль. Плюсы такого выбора в ненадобности масштабных доработок и покупке нового более просторного корпуса. Минусы внешней СВО – низкая мобильность компьютера.

Внутренняя СВО – большинство узлов системы монтируются внутри системных блоков. Плюсы такого варианта – высокая мобильность компьютера, внешний вид не страдает. Минусы варианта – при монтаже нужна обязательная модификация корпуса ПК.

Выполнение пайки радиатора в домашних условиях

Пайка радиаторов системы охлаждения является классическим методом ремонта. Она применялась еще в начале прошлого века. В то время радиаторы изготавливались из меди или ее сплавов (обычно латунь). Технология пайки в то время была отработана. Медный чайник могли отремонтировать в любом городе. Процесс пайки выполняется при температуре плавления используемого припоя. Для выполнения пайки требуются следующие материалы и инструменты:

  • мощный паяльник на 220 Вольт (лучше использовать молоткового типа мощностью 250 или 200 Ватт, при отсутствии – минимум на 100 Ватт);
  • наждачная бумага средней зернистости;
  • активный флюс;
  • припой оловянно-свинцовый ПОС-60 или ПОС -40;
  • растворитель для очистки поверхности.

Предварительно ремонтируемую поверхность радиатора очищают от посторонних загрязнений. Далее в случае необходимости для обеспечения доступа к месту пайки аккуратно удаляют охлаждающие ребра. Затем производят чистовую зачистку при помощи наждачной бумаги.

Паяльник (если он новый) предварительно залуживают. Для этого на его разогретое до рабочей температуры жало наносят активный флюс, далее на жало паяльника расплавляют припой. В случае отсутствия активного флюса можно использовать таблетку аспирина. При этом желательно не вдыхать «термоядерные» испарения от таблетки.

Далее активный флюс наносят на зачищенное место. После этого на жало паяльника наносят большую каплю припоя и производят процесс пайки. Он требует наличия небольшого опыта. Возможно, потребуется время, чтобы выполнить качественную пайку.

Охлаждение своими руками

Простейшим примером радиатора будет «солнышко», вырезанное из жести или листа алюминия. Такой радиатор может охладить 1-3Вт светодиодов. Скрутив два таких листа между собой через термопасту, можно увеличить площадь теплоотдачи.

Это банальный радиатор из подручных средств, он получается довольно тонким и использовать его для более серьёзных светильников нельзя.

Сделать своими руками радиатор для светодиода на 10W таким образом будет невозможно. Поэтому можно применить для таких мощных источников света радиатор от центрального процессора компьютера.

Если если оставить кулер, активное охлаждение светодиодов позволит использовать и более мощные LED. Такое решение создаст дополнительный шум от вентилятора и потребует дополнительного питания, плюс периодическое ТО кулера.

Площадь радиатора для 10Вт светодиода будет довольно большой – порядка 300см 2 . Хорошим решением будет использование готовых алюминиевых изделий. В строительном или хозяйственном магазине вы можете приобрести алюминиевый профиль и использовать его для охлаждения мощных светодиодов.

Сделав сборку нужной площади из таких профилей, вы можете получить неплохое охлождение, не забудьте все стыки промазать хотя бы тонким слоем термопасты. Стоит сказать, что есть специальный профиль для охлаждения, который выпускается промышленно самых разнообразных видов.

Если у вас нет возможности сделать радиатор охлаждения светодиодов своими руками вы можете поискать подходящие экземпляры в старой электронной аппаратуре, даже в компьютере. На материнской плате расположены несколько. Они нужны для охлаждения чипсетов и силовых ключей цепей питания. Отличный пример такого решения изображен на фото ниже. Их площадь обычно от 20 до 60см 2 . Что позволяет охлаждать светодиод мощностью 1-3 Вт.

Еще один интересный вариант изготовления радиатора из листов алюминия. Такой метод позволит набрать практически любую необходимую площадь охлаждения. Смотрим видео:

Как правильно запаять радиатор

Чтобы убрать оксиды с поверхности алюминия, используют специально приготовленные флюсы. В их состав входят кадмий, висмут или цинк. Именно эти элементы помогают очистить поверхность металла и тем самым соединить изделие с припоем.

Стоимость готовых флюсов с хорошими качественными характеристиками достаточно высокая. Поэтому домашние мастера предпочитают самостоятельно делать подобные составы (плавни).

Чтобы оградить участок изделия, который нуждается в ремонте, от контакта с воздухом, есть несколько способов:

  • с использованием железно-канифольного флюса
  • с помощью самодельного плавня;
  • применение низкотемпературного припоя с проклейкой.

Трубки

Те, кто хоть раз видел либо кастомное водяное охлаждение для ПК, либо магазинный вариант, знают, что есть во всей конструкции трубки. Обычно именно по таким шлангам проносится вода от одной точки теплообмена к другой. Это обязательный компонент, который, в принципе, может иметь некоторые вариации.

Чаще всего для ПК эти трубки изготавливаются из ПВХ. Есть, конечно, варианты из силикона

На производительность трубка мало оказывает влияния, единственное, на что нужно обратить внимание, – это на диаметр. Меньше 8 мм лучше не приобретать, если собираетесь самостоятельно изготавливать СВО

Почему появляется течь

Течь в рассматриваемом устройстве может возникать лишь по двум причинам: вследствие механического повреждения и из-за коррозионных процессов, происходящих внутри трубок. В первом случае это может быть воздействие на соты или бачки постороннего предмета. Такое обычно случается в результате дорожно-транспортных происшествий, наезда на высокий бордюр, удара камня и т. п. Здесь все понятно. Визуальный осмотр позволит точно определить место повреждения, а также оценить возможность ремонта. С коррозией немного сложней. Чтобы не ошибиться и запаять радиатор охлаждения там, где нужно, потребуется провести несколько нехитрых действий для обнаружения проблемной зоны или даже зон. Дело в том, что коррозионные повреждения могут возникать в нескольких местах одновременно.

Водяное охлаждение для ПК – плюсы и минусы

Споры о целесообразности приобретения жидкостных установок не утихают. Для начала рассмотрим преимущества водяного охлаждения для ПК:

  1. Компьютер с водяным охлаждением издает меньше шума.
  2. Водяные охладители намного эффективнее.
  3. Водяное охлаждение для занимает сравнительно мало места.
  4. Система водяного охлаждения способна одновременно использоваться для отвода тепла сразу от нескольких ответственных узлов устройства (видеокарты, CPU, винчестера).

Недостатки водяного охлаждения ПК:

  1. Устройство сравнительно сложнее, для монтажа требуются собственные специальные навыки или привлечение специалиста.
  2. Существует потенциальный риск протечки жидкого теплоносителя на узлы ПК.
  3. Для функционирования системы используется специальная жидкость.
  4. Высокая стоимость.
  5. Водяное охлаждение для ПК периодически требует профилактики – прочистки микроканалов и замены теплоносителя.

Какое охлаждение лучше водяное или воздушное?

Желательно все варианты рассматривать в конкретных условиях, исходя из мощности собственного компьютера. Для простых задач хватает нескольких стандартных кулеров, но сравнительно мощные устройства требуют эффективного отвода тепла. Попытаемся изучить, что лучше водяное охлаждение процессора или воздушное, исходя из следующих критериев:

  1. Простота монтажа – воздушные кулеры проще и быстрее устанавливать.
  2. Стоимость – монтаж СВО обойдется пользователю дороже.
  3. Использование жидкостных охладителей разрешает осуществлять более тонкие настройки, включая в контур множество дополнительных компонентов.
  4. Размеры – в корпусе компьютера требуется больше места для монтажа радиатора и трубок.
  5. Уровень шума – комп с водяным охлаждением работает тише благодаря меньшей скорости вентиляторов.
  6. Эффективность – жидкий теплоноситель лучше перемещает тепло, разрешая увеличивать мощность приборов.

Что такое водяное охлаждение компьютера?

Любое электронное устройство требует защиты от перегрева. В старых приборах изначально применялись вентиляторы, но постепенно мощность процессоров возросла до таких пределов, что кулеры во многих случаях перестают справляться с проблемой. Система водяного охлаждения в качестве теплоносителя использует жидкость для отвода тепла от CPU наружу. За счет лучшей теплопроводности жидкостные установки сравнительно лучше решают поставленную задачу.

Из чего состоит водяное охлаждение?

По набору комплектующих элементов данная установка напоминает системы, которые устанавливают на автомобильных двигателях. Жидкостное охлаждение состоит из следующих основных узлов:

  1. Блок с воздушными вентиляторами.
  2. Водяной радиатор.
  3. Помпа.
  4. Расширительный бачок.
  5. Набор ватерблоков – предназначены для передачи тепловой энергии от нагретого компонента ПК к теплоносителю.
  6. Шланги.
  7. Патрубки.

Как работает водяное охлаждение компьютера?

Жидкостные охладители отводят тепло несколько по иному принципу, чем привычные воздушные кулеры. Разобраться в способе их работы сравнительно просто. Рассмотрим краткое описание, как функционирует система водяного охлаждения для процессора:

  1. Помпа обеспечивает непрерывную циркуляцию теплоносителя.
  2. По системе трубок жидкость поступает к горячим узлам ПК, на которые прикручены ватерблоки, где происходит непрерывный отбор тепловой энергии.
  3. Далее нагретый теплоноситель поступает в радиатор.
  4. С помощью вентиляторов пластины радиатора продуваются, и система жидкостного охлаждения отдает тепло в окружающую среду.

Внутренний ремонт радиатора с помощью химических средств

Ремонт радиатора может быть выполнен и народными методами. Так, когда всяческие химикаты еще попросту не были изобретены, самым эффективным способом борьбы со сломанным теплообменником авто считали обыкновенную горчицу. Ее попросту засыпали в радиатор автомобиля. Так как там циркулирует горячая вода, горчица достаточно быстро разбухает и закрывает собой все небольшие трещины в патрубках.

Так, в любой момент можно приобрести химические средства, которые действуют примерно по этому же принципу. Они часто продаются под названиями «порошковый восстановитель», «восстановительные средства» или «герметики для радиатора».

Основным недостатком использования подобных химикатов является то, что вряд ли удастся узнать их точный состав или же точное место производства. Точно так, как и в ситуации с обычной горчицей, использование некоторых видов таких химикатов может привести к засорению теплообменника. Более того, иногда данные вещества могут вывести из строя и всю охладительную систему мотора.