Источник постоянного тока высокого напряжения (hvdc). схема

Оглавление

Приступаем к сборке агрегата

Этап первый: закрепляем двигатель от мотокосы

Для начала берем отрезок доски и обрезаем ее предварительно по размеру нашей станины. Желательно брать увесистый материал, чтобы наше оборудование имело прочную и надежную основу.

Размечаем положение двигателя от мотокосы. С помощью шаблона из бумаги размечаем точно отверстия, засверливая их дрелью или шуруповертом.

Примеряем оба двигателя на станине. Отсоединяем топливный бачок, и на посадочные места закрепляем двигатель от мотокосы.

Этап второй: крепим движок постоянного тока

Размечаем положение движка. Расстояние от обеих валов двигателей должно быть несколько сантиметров, чтобы избежать трения между ними.

Центруем валы наших движков. Расхождение по центрам проще всего откорректировать какими-либо прокладками, или же попросту подправить посадочное место на деревянной станине. Сделать это можно обычной стамеской. Чем меньше будет люфт между валами, тем меньше будет вибрация от агрегата и износ движущей части.

Размечаем патрубки. Чаще всего валы двигателей различаются по размеру диаметров. Это также поправимо, если в качестве соединительных патрубков использовать ПВХ шланги разных диаметров. Их гибкость поможет сгладить мельчайшую неточность в оцентровке валов. В нашем случае автор использовал два шланга разного диаметра, вставив один в другой.

Отрезав патрубки нужной нам длины, насаживаем с обеих сторон три хомута, поджимая их отверткой.

Закрепляем двигатель постоянного тока на саморезы, проложив их предварительно шайбами. Валы соединяем от руки и поджимаем хомуты отверткой.

Теперь можно закрепить и топливный бачок. Справиться с этой задачей не сложно, используя длинный саморез и обрезанный колпак от дюбель-гвоздя. Не забываем подсоединить топливные трубки.

Заведя топливный двигатель стартером, измеряем напряжение на выходе вольтметром. Отверткой регулируем подачу топлива, и количество оборотов, от которого и зависит напряжение. Ориентируясь по номиналу инвертора, выставляем выходящее напряжение с небольшим запасом.

Этап третий: подключаем инвертор

Зачищенные предварительно концы кабелей от двигателя постоянного тока закрепляем на клеммах инвертора. Индикатор питания сразу покажет активность прибора.

Простой контролькой (лампочкой с отрезком кабеля и вилкой на конце) проверяем работу нашего чудо-генератора.

Для подключения электродвигателя к инвертору используем клеммы.

Этап четвертый: кнопка выключения двигателя

Поскольку ведущий у нас двигатель, создающий механическое вращение, ему необходим выключатель. Кнопка выключения идет в комплекте с устройством, поэтому ей необходимо лишь найти удобное место.

Разрядник на 20..30 кВ

Ниже показана последовательность сборки. Она практически не отличается от того, что делали для разрядника из бутылочного горлышка. Только размеры всех деталей больше.

Дальше остается только собрать разрядник.

Разрядник неплохо работает при длине искры до 10 мм (в корпусе из 40 мм трубы) и до 15 мм (в корпусе из 50 мм трубы), что соответствует напряжениям свыше 30 кВ.

При энергиях разряда до 10 Дж разрядника хватает на несколько тысяч импульсов, после чего его необходимо вскрывать и чистить корпус изнутри.

При энергиях разряда в 120 Дж разрядника хватает на несколько десятков импульсов (ближе к сотне) после чего необходимо чичтить.

Функциональный транзисторный генератор

Функциональные генераторы на транзисторах автоколебания изобретены для производства методично повторяющихся сигналов-импульсов заданной формы. Форма их задаётся функцией (название всей группы подобных генераторов появилось вследствие этого).

Различают три основных вида импульсов:

  • прямоугольные;
  • треугольные;
  • пилообразные.

Как пример простейшего нч производителя прямоугольных сигналов зачастую приводится мультивибратор. У него самая простая схема для сборки своими руками. Часто с её реализации начинают радио электронщики. Главная особенность – отсутствие строгих требований к номиналам и форме транзисторов

Это происходит из-за того, что скважность в мультивибраторе определяется емкостями и сопротивлениями в электрической цепи транзисторов. Частота на мультивибраторе находится в диапазоне от 1 Гц до нескольких десятков кГц. Высокочастотные колебания здесь организовать невозможно

Высокочастотные колебания здесь организовать невозможно.

Получение пилообразных и треугольных сигналов происходит путём добавления в типовую схему с прямоугольными импульсами на выходе дополнительной цепочки. В зависимости от характеристик этой дополнительной цепочки, прямоугольные импульсы преобразуются в треугольные или пилообразные.

Генератор на полевом транзисторе

Принцип работы этого устройства не отличается от рассмотренных выше вариантов. Но в схему внесены изменения, которые существенно повышают эффективность использования электроэнергии, надёжность и долговечность.

Схема блокинг генератора на полевом транзисторе

Рекомендации для правильной сборки изделия:

  • Указанные на чертеже отечественные транзисторы и диоды можно заменить аналогичными импортными полупроводниковыми приборами с подходящими электрическими характеристиками.
  • Сопротивление R2 подбирают так, чтобы на C1 напряжение в режиме холостого хода не превышало уровень 450 V. Такая настройка предотвратит пробой полупроводникового перехода транзистора VT
  • Во избежание повреждения устройства, его нельзя включать без нагрузки.
  • Сопротивление R6 выполняет защитные функции. Его наличие позволяет отключать генератор от сети при разомкнутой цепи прерывателя S

Краткое описание самодельной установки

В корпусе 2 установлен электрод 1. Его возвратно-поступательное перемещение производится электромагнитом из катушки 7. К направляющей втулке подведена клемма 3 (подается положительный потенциал).

На рабочем столе 4 крепится деталь, которую нужно обработать. На столе имеется клемма 5, к ней подключается отрицательный проводник. По трубке 6 внутрь корпуса подается смазка.

Включив преобразователь, на токонесущих проводах будет получено рабочее напряжение. Дополнительно подается напряжение на индукционную катушку 7. Она создает вибрацию электрода 1, направляя его движение вправо и влево. Электрод 1 касается обрабатываемой детали. В зоне контакта возникает ток величиной 7000…9000 А.

При каждом движении инструмента в сторону детали выжигается небольшое количество металла. В течение 10…12 минут работы электроэрозионного станка в детали будет получено сквозное отверстие. Получено отверстие в хвостовике сверла. Обычным способом просверлить подобное отверстие довольно сложно.

Список компонентов:

  1. U1 – «IR2153»;
  2. C1 – электролит 470-1000uf 16v, желательно Low Esr;
  3. C2 – керамика 1n;
  4. C3, C4 – керамика 100n;
  5. C5, C6 – полипропилен 470nf 630v;
  6. R1 – многооборотный подстроечный резистор;

Остальные компоненты вопросов думаю не вызывают.

Файл печатной платы: ir2153.lay6

В качестве генератора используется распространённая микросхема IR2153, для работы которой требуются всего несколько деталей в обвязке: времязадающая RC цепочка и конденсатор с диодом для верхнего ключа.

Транзисторы при сборке необходимо установить на небольшие радиаторы, я этого делать не стал т.к. плата нужна лишь для демонстрации. Так же не рекомендую включать устройство без запаянного электролитического конденсатора, может получится ситуация когда через ключи потечет сквозной ток.

Номиналы времязадающей цепи с помощью подстроечного резистора позволяют микросхеме работать в диапазоне частот примерно от 7 до 146kHz. В процессе настройки включать высоковольтный генератор желательно через амперметр для контроля тока, при этом желательно что бы блок питания выдавал не менее 3-х ампер при 12 вольт.

Подстроечным резистором можно пройтись по всему диапазону частот для нахождения резонансных участков, при этом для получения 20 киловольт искровой разряд не должен превышать буквально 1.5 см, а ток потребления при этом должен быть около 0.6-0.8А.

Если добиться таких результатов не удается то есть два варианта. Первый из них «поиграть витками», увеличивая или уменьшая их количество, второй – заменить резонансный конденсатор с 470 на 330 или 220 нанофарад. У меня все заработало сразу после сборки, но как говориться – если вдруг.

Перед намоткой первичной обмотки на ТДКС феррит следует изолировать изолентой или скотчем, мотать следует эмальпроводом 0.6-0.8мм, или (что лучше) сразу двумя-тремя проводами 0.6 параллельно. Провода от трансформатора до платы желательно не более 10 сантиметров.

Не следует забывать что во вторичной обмотке ТДКС как правило находится диод, поэтому умножитель напряжения к нему не подключишь.

Для использования в электростатической коптильне параллельно выходам необходимо поставить конденсатор

30kV 470pf – 2.2n и выходной токоограничительный резистор.

Электрогенератор своими руками в домашних условиях: чертежи и подробности

Не всегда местные электросети способны полноценно обеспечивать электричеством дома, особенно, если это касается загородных дач и особняков. Перебои с постоянным электроснабжением или же его полное отсутствие заставляет искать альтернативные способы получения электричества.

Одним из таких является использование электрогенератора – прибора, способного преобразовывать и накапливать электричество, используя для этого самые необычные ресурсы (энергия солнца, ветра, приливов и отливов).

Его принцип работы достаточно простой, что делает возможным сделать электрогенератор своими руками. Возможно, самодельная модель не сможет конкурировать с аналогом заводской сборки, однако это отличный способ сэкономить более 10 000 рублей.

Если рассматривать самодельный электрогенератор в качестве временного альтернативного источника электроснабжения, то вполне можно обойтись и самоделкой.

Как сделать электрогенератор, что для этого потребуется, а также какие нюансы придется учитывать, узнаем далее.

Желание иметь в своем пользовании электрогенератор омрачается одной неприятностью – это высокая стоимость агрегата. Как ни крути, но самые маломощные модели имеют достаточно заоблачную стоимость – от 15 000 рублей и выше. Именно этот факт наталкивает на мысль о собственноручном создании генератора. Однако, сам процесс может быть затруднительным, если:

  • нет навыка в работе с инструментом и схемами;
  • нет опыта в создании подобных приборов;
  • не имеется в наличии необходимых деталей и запчастей.

Если же все это и огромное желание присутствуют, то можно попробовать собрать генератор, руководствуясь указаниями по сборке и приложенной схемой.

Не секрет, что покупной электрогенератор будет обладать более расширенным перечнем возможностей и функций, в то время как самоделка способна подводить и давать сбои в самые неподходящие моменты. Поэтому, покупать или делать своими руками – вопрос сугубо индивидуальный, требующий ответственного подхода.

Как работает электрогенератор

Принцип работы электрогенератора основывается на физическом явлении электромагнитной индукции. Проводник, проходящий через искусственно созданное электромагнитное поле, создает импульс, который преобразуется в постоянный ток.

Генератор имеет двигатель, который способен вырабатывать электричество, сжигая в своих отсеках определенный вид топлива: бензин, газ или дизельное топливо.

В свою очередь топливо, попадая в камеру сжигания, в процессе горения вырабатывает газ, который вращает коленчатый вал.

Последний передает импульс ведомому валу, который уже способен предоставить определенное количество энергии на выходе.

Безлопастная турбина Теслы


Турбина Теслы из музея

Эту турбину Тесла запатентовал в 1913 году. Изобретение турбины без лопастей по сути было вынужденным, так как для изготовления турбины с лопастями не было подходящих технологий, да и аэродинамическая теория ещё не была создана, поэтому Тесла решил использовать эффект пограничного слоя, а не давление вещества на лопатки, как сейчас широко распространено в традиционных турбинах.


Устройство турбины Теслы

Часто можно встретить утверждения, что КПД его турбины может теоретически достигать 95%, но на практике на заводах Вестингауза такая турбина показала КПД в районе 20%. Хотя позже различные модификации турбины другими изобретателями доводили КПД до 40% и более.


Путь жидкости в турбине Теслы

Очень хорошо принципы работы турбины Тесла на английском языке объяснены в этом видео:

По состоянию на 2021 год турбина Теслы так и не нашла широкого коммерческого использования с момента своего изобретения. Пока что ей удалось найти узкое применение в насосах. Связано это в первую очередь с тем, что диски внутри турбины сильно деформируются во время работы и это сказывается на общей эффективности применения турбины. Хотя сейчас продолжаются технологические поиски, чтобы решить все возникающие проблемы. Сравнительно недавно вопрос о деформации дисков частично был решён с использованием новых материалов, таких как углеродное волокно.

Видео

Для самостоятельного изготовления флокатора, пистолета порошковой покраски или электростатической коптильни требуется источник высокого напряжения. И если первые два устройства требуют 75-100 киловольт, то высоковольтный генератор для коптильни работает при 15-20.

В сети есть множество схем высоковольтных генераторов сделанных с использованием строчных трансформаторов от мониторов, телевизоров или автомобильных катушек зажигания. В большинстве своём их схемотехника удручает – как правило это простейшие обратноходовые преобразователи, а значит транзистор в них будет работать в роли кипятильника т.к. для новичка наверняка не имеющего осциллографа рассчитать снаббер практически не реально.

Схемы из прошлого века на тиристорах с питанием от сети 220 вольт опасны и в случае неосторожности могут привести к печальным последствиям. Мы же сделаем резонансный полумост на ТДКС

Давайте посмотрим схему:

При использовании высоковольтного генератора для копчения:

  1. Не стоит брать руками сразу два оголённых высоковольтных провода: это действие может Вас сильно огорчить.
  2. По одному брать провода тоже не стоит: при неплотном контакте можно получить ВЧ ожог.
  3. Высоковольтные провода должны находиться на расстоянии от любых других проводов, и устройств типа телевизора, компьютера и т.п. (Во избежание).
  4. Не стоит «искрить» (допускать расстояние менее 3-4 см между оголёнными высоковольтными проводами), это действие вызывает сильные помехи и наводки, есть ничтожная (но не нулевая) вероятность того, что что-то из включенной поблизости электроники выйдет из строя.
  5. В качестве высоковольтных нельзя применять обычные силовые провода — обязательно будут утечки т.к. их изоляция не рассчитана на такое напряжение.
  6. Не допускать неизолированных мест до входа в коптильную камеру, с них будут утечки – а это плохо.
  7. Избегать короткого замыкания между ВВ проводами. Блок выдерживает КЗ, но следует понимать что есть вероятность выхода из строя при долговременной работе.
  8. К примеру, камера заполнилась дымом. Включилось высокое напряжение но дым не рассеивается, соответственно проверить нет ли в камере короткого замыкания, которое, в частности, может обеспечить и сам продукт при соприкосновении с излучателями.
  9. Если в процессе работы дым стал рассеиваться «хуже», протереть изоляторы. Загрязненные изоляторы приводят к утечкам, которые отбирает полезную мощность.
  10. Не желательно надолго включать блок с никуда не подключенными ВВ проводами. Так называемый «холостой режим» работы для блока неприятен.
  11. По факту получения обязательно возникнет желание побаловаться и проверить блок, делать это лучше так: взять любую плоскую железку и подключить к ней синий провод, красный провод разместить на расстоянии ~8-10 см от плоскости железки, кончик провода согнуть что бы он смотрел на нее. Взять бумажку, например обычный листок А4 согнутый вдвое, включить блок установив мощность на 30-40, прислонить бумажку к железке, подергать ее вверх, обрадоваться результату.
  12. В коптильной камере синий провод должен быть подключен к излучателям, красный — к продукту. Магия.
  13. При работе блока в коптильной камере размером не больше холодильника, нет смысла устанавливать мощность выше ~40-50%, выигрыш по времени составит ~5-10 секунд на цикл а качество продукта будет хуже.

Сергей, к примеру, более десяти лет занимается копчением электростатикой и при первом опыте с моим блоком получил вот такой результат:

Таким образом следует понимать, что настройки мощности, времени работы и времени паузы зависят от многих факторов и должны быть подобраны индивидуально.

Как сделать генератор статического напряжения за 5$

В этой статье мы рассмотрим, как сделать генератор статического напряжения. С помощью него можно проводить различные эксперименты, устраивать розыгрыши для друзей, показывать фокусы и так далее. Статическое напряжение способно искажать струю воды, притягивать различные предметы, к примеру, песок, им можно заряжать бумажечки и многое другое.

В качестве основного элемента для самоделки автор решил использовать USB-ионизатор воздуха.

Материалы и инструменты для самоделки: — USB-ионизатор воздуха; — термоусадочная трубка; — провод в изоляции; — горячий клей; — паяльник с припоем; — три аккумуляторных батареи по 1.5 В; — изолента.

Процесс изготовления самоделки:

Шаг первый. Разбираем ионизатор

Сперва нужно разобрать ионизатор. По словам автора, делается это очень просто. Нужно воспользоваться иголкой или лезвием ножа, чтобы расколоть пластиковые половинки ионизатора. Иногда перед этим нужно выкрутить пару винтов, которые стягивают корпус. По мнению автора, такие приспособления вообще плохо взаимодействуют с компьютером, поэтому он не рекомендует USB-ионизаторы подключать напрямую к ноутбуку или компьютеру. Лучше всего использовать удлинитель.

Условно схему преобразователя можно разделить на две части. Одна половина схемы, та, которая находится ближе всего к USB, преобразует постоянный ток от порта USB в переменный. Далее этот переменный ток поступает на вторую половину устройства, переходя через миниатюрный трансформатор. Во второй же половине находится четыре множителя напряжения, которые соединены последовательно. В итоге образуется высокое напряжение, которое подается на белый провод. В принципе, эта схема уже почти готова для создания статического напряжения, но автор ее переделывает для работы от батареек.Шаг второй. Добавляем входные и выходные провода

Теперь автор дорабатывает устройство под себя. Первым делом нужно убрать разъем USB. Для этого нужно отогнуть две пластины, которыми порт крепится к плате, а затем коснуться паяльником одновременно четырех контактов разъема. Ну, или отпаивать по одному, постепенно отгибая разъем от платы.

Перевернув плату, можно увидеть маркировку, которая позволяет определить, к каким контактам подключать питание. Это обозначения V+ и GND (земля, минус). К каждому контакту нужно припаять провода, с помощью них уже будет подключаться батарея. Еще автор убрал белый исходящий провод и припаял на его место более длинный.Шаг третий. Изолируем схему

Чтобы плата не ударила током при работе или не уничтожила сама себя, ее нужно хорошо заизолировать. Для этого места пайки автор изолирует с помощью горячего клея. Помимо этого горячий клей дополнительно фиксирует провода. Далее автор берет термоусадочную трубку и натягивает на плату

После осторожного прогрева термоусадки огнем, она сжимается, но по краям остаются отверстия. Эти отверстия затем заполняются горячим клеем

Теперь устройство хорошо заизолировано. Еще на плате есть светодиод, он показывает, работает ли устройство. Чтобы светодиод был виден, над ним нужно аккуратно сточить термоусадку.

Шаг четвертый. Подключаем генератор Наверное, всем известно, что USB выдает питание в 5В, однако большинство электроники, подключаемой к компьютерам, может работать в пределах и более низкого напряжение. Так как найти аккумулятор, который бы выдавал 5В проблематично, то автор вместо пяти решил использовать 4.5В, соединив 3 батареи по 1.5 В последовательно. Схема подключения батарей такова, что устройство по умолчанию постоянно включено. Чтобы его выключить, нужно вставить кусок пластика или бумажечку между батареями, тем самым разомкнув цепь. Можно сделать и включатель. Батарейки удерживает кусок изоленты. Еще в этом месте к отрицательному проводу нужно подключить длинный заземляющий провод.

Шаг пятый. Завершающий этап. Тестирование устройства

Чтобы включить устройство, понадобится подключить два кабеля. Один кабель подключается к телу человека (исходящий красный), второй черный — это земля, он подключается к объекту, с которым нужно взаимодействовать. Например, черный провод можно подключить к водопроводному крану, а красный к себе, так можно будет с помощью пальца отклонять поток воды. Источник Доставка новых самоделок на почту Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Испытания преобразователя в действии

Инвертор способен выдерживать 10 минут непрерывной работы, после чего трансформаторы начинают требовать охлаждения. Транзисторы не нагреваются слишком сильно — радиаторы остаются почти холодными. Большая часть тепла выделяется на выпрямителе моста, который может неплохо нагреваться — на нем тоже большой радиатор.

Инвертор способен выдавать большие разряды благодаря значительной эффективности тока. Максимальная длина растянутой молнии составляет чуть более 20 см.

Также покажем сигналы осциллограмм: Первый это синусоида на LC-схеме без зажженной дуги. Последний скриншот показывает последовательность импульсов на одном из полевых ключей.

Назначение и применение

Высоковольтные трансформаторы (ВВ) относятся к группе преобразователей напряжения. Их предназначение – преобразовать высоковольтное напряжение в низковольтное для питания различных приборов. По принципу работы преобразователи напряжения мало отличаются от силовых трансформаторов. Во вторичной обмотке всегда меньше витков, чем в первичной, если преобразователь понижающий, и наоборот, если прибор повышающий.

ВВ трансформаторы классифицируются по:

  • количеству фаз (одно- или трехфазные);
  • количеству обмоток (две, три или четыре);
  • допускаемым погрешностям;
  • способу установки (внутренняя или наружная);
  • назначению (общее или специальное).

Преобразователи специального назначения используются в различном электрооборудовании:

  • телевизорах и радиоприемниках;
  • устройствах связи;
  • бытовых приборах (например, боках питания для систем освещения).

Большинство преобразователей этого типа маломощные (не более нескольких киловольт-ампер), частота от 50 Гц, предназначены для внутренней установки. Количество намоток зависит от того, в какое оборудование трансформатор будет установлен. Изоляция заливается эпоксидной смолой.

Электростатическая коптильня для себя, наиболее простой вариант

Коптить сало и мясо можно достаточно просто и в условиях городской квартиры, где нет возможности установить и запустить генератор дыма, и тем более нет способа избавляться от продуктов горения стружек. Поэтому домашние модели электростатической коптильни изготавливаются компактными и маломощными.

Основные преимущества приведенного ниже варианта электрической коптильной камеры заключаются в следующем:

  • Очень простая конструкция;
  • Минимальное количество материалов и деталей, требующихся для изготовления коптильни;
  • Легкое обслуживание.

Основные положения и принцип работы коптильни с управляемым электростатическим полем изложены на видео

Конструкция камеры

Коптильня представляет собой корпус диаметром 300-350 мм и высотой 600-700 мм, можно использовать пластиковую или картонную трубу соответствующего диаметра. В нижней части корпуса изготавливается металлическое основание — гильза, лучше всего из алюминиевой или стальной емкости.

В данной конструкции нет отдельного выносного дымогенератора, вместо него используется встроенная модель. По сути, это лоток со всторенным электронагревателем. Так как объем электростатической камеры небольшой, то для одной сессии закладывается не более 70 мл мелкой опилки из бука или ольхи. В качестве нагревателя можно использовать китайский паяльник со снятой ручкой, вместо жала уложена согнутая спиралью медная проволока.

Основное количество дыма в коптильне образуется за счет возгонки сухой стружки при контакте с разогретой до 350-400 о С спиралью нагревателя. В результате дым для электростатического копчения получается более холодный, влажный и насыщенный, чем при термическом разложении древесины. Большая часть дыма охлаждается на конусной тарелке в нижней части коптильни.

Для того чтобы избежать утечки дыма, в верхней части крышки устанавливается патрубок тройник, на который одевается емкость для сбора конденсата и миниатюрный вентилятор. Часть воздуха и дыма из электростатической камеры откачивается через полихлорвиниловую трубку для того, чтобы создать разрежение и предотвратить утечку запахов и дыма.

Устройство электростатического блока

Электрическая часть коптильни состоит из трех частей:

  • Генератора электростатического высокого напряжения;
  • Подвески для мяса и рыбы;
  • Направляющей сетки.

В верхней части коптильни на керамических изоляторах установлена решетка, на которую одевается подвеска с продуктами. К решетке подключается отрицательный электрод электростатического генератора. Вдоль стенок коптильни укладывается ватман с наклеенной проволокой, это положительный электрод. На проволоке припаяны заостренные отрезки из той же проволоки, они направляют поток заряженных молекул в сторону продуктов.

Схема генератора

Наиболее сложная часть электростатической коптильни — это электронная схема генератора постоянного высоковольтного напряжения. Схема генератора электростатики представлена ниже.

В основе схемы используется высоковольтный трансформатор ТДС17. Для формирования прямоугольных импульсов используется схема, собранная на NE555 из мощного полевого транзистора IRF3205, рабочая частота задающих цепей около 10кГц, но ее можно регулировать с помощью переменного резистора R5. В результате потенциал электростатического поля на сетке коптильни может изменяться в пределах 10%. Для питания схемы используют сборку ЕН 8 142 серии.

В качестве первичной обмотки используют многожильный медный провод диаметром 1 мм, десять витков наматываются непосредственно на магнитопровод. При настройке генератора высоковольтного поля, возможно, придется поменять местами подключение, чтобы на выходе получилась нужная для коптильни полярность.

Список компонентов:

  1. U1 – «IR2153»;
  2. C1 – электролит 470-1000uf 16v, желательно Low Esr;
  3. C2 – керамика 1n;
  4. C3, C4 – керамика 100n;
  5. C5, C6 – полипропилен 470nf 630v;
  6. R1 – многооборотный подстроечный резистор;

Остальные компоненты вопросов думаю не вызывают.

Файл печатной платы: ir2153.lay6

В качестве генератора используется распространённая микросхема IR2153, для работы которой требуются всего несколько деталей в обвязке: времязадающая RC цепочка и конденсатор с диодом для верхнего ключа.

Транзисторы при сборке необходимо установить на небольшие радиаторы, я этого делать не стал т.к. плата нужна лишь для демонстрации. Так же не рекомендую включать устройство без запаянного электролитического конденсатора, может получится ситуация когда через ключи потечет сквозной ток.

Номиналы времязадающей цепи с помощью подстроечного резистора позволяют микросхеме работать в диапазоне частот примерно от 7 до 146kHz. В процессе настройки включать высоковольтный генератор желательно через амперметр для контроля тока, при этом желательно что бы блок питания выдавал не менее 3-х ампер при 12 вольт.

Подстроечным резистором можно пройтись по всему диапазону частот для нахождения резонансных участков, при этом для получения 20 киловольт искровой разряд не должен превышать буквально 1.5 см, а ток потребления при этом должен быть около 0.6-0.8А.

Если добиться таких результатов не удается то есть два варианта. Первый из них «поиграть витками», увеличивая или уменьшая их количество, второй – заменить резонансный конденсатор с 470 на 330 или 220 нанофарад. У меня все заработало сразу после сборки, но как говориться – если вдруг.

Перед намоткой первичной обмотки на ТДКС феррит следует изолировать изолентой или скотчем, мотать следует эмальпроводом 0.6-0.8мм, или (что лучше) сразу двумя-тремя проводами 0.6 параллельно. Провода от трансформатора до платы желательно не более 10 сантиметров.

Не следует забывать что во вторичной обмотке ТДКС как правило находится диод, поэтому умножитель напряжения к нему не подключишь.

Для использования в электростатической коптильне параллельно выходам необходимо поставить конденсатор

30kV 470pf – 2.2n и выходной токоограничительный резистор.